Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?


当前回答

iterable是一个具有__iter__()方法的对象。它可以迭代多次,比如list()和tuple()。

迭代器是进行迭代的对象。它由__iter__()方法返回,通过自己的__iter__()方法返回自身,并有一个next()方法(3.x中的__next__())。

迭代是调用next()响应的过程。__next__()直到引发StopIteration。

例子:

>>> a = [1, 2, 3] # iterable
>>> b1 = iter(a) # iterator 1
>>> b2 = iter(a) # iterator 2, independent of b1
>>> next(b1)
1
>>> next(b1)
2
>>> next(b2) # start over, as it is the first call to b2
1
>>> next(b1)
3
>>> next(b1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> b1 = iter(a) # new one, start over
>>> next(b1)
1

其他回答

iterable是一个具有iter()方法的对象,该方法返回一个迭代器。这是可以循环的。 示例:列表是可迭代的,因为我们可以遍历列表BUT不是迭代器 迭代器是一个可以从中获取迭代器的对象。它是一个具有状态的对象,以便在迭代过程中记住它所处的位置

要查看对象是否有iter()方法,可以使用下面的函数。

ls = ['hello','bye']
print(dir(ls))

输出

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

正如你所看到的有iter(),这意味着它是一个可迭代对象,但不包含next()方法,这是迭代器对象的一个特征

无论何时在Python中使用for循环或map或列表推导式,都会自动调用next方法以从迭代中获取每一项

iterable是一个具有__iter__()方法的对象。它可以迭代多次,比如list()和tuple()。

迭代器是进行迭代的对象。它由__iter__()方法返回,通过自己的__iter__()方法返回自身,并有一个next()方法(3.x中的__next__())。

迭代是调用next()响应的过程。__next__()直到引发StopIteration。

例子:

>>> a = [1, 2, 3] # iterable
>>> b1 = iter(a) # iterator 1
>>> b2 = iter(a) # iterator 2, independent of b1
>>> next(b1)
1
>>> next(b1)
2
>>> next(b2) # start over, as it is the first call to b2
1
>>> next(b1)
3
>>> next(b1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> b1 = iter(a) # new one, start over
>>> next(b1)
1

Iterable:-可迭代的东西是可迭代的;比如序列,比如列表,字符串等等。 它也有__getitem__方法或__iter__方法。现在如果我们对该对象使用iter()函数,我们将得到一个迭代器。

迭代器:-当我们从iter()函数获得迭代器对象;我们调用__next__()方法(在python3中)或简单地调用next()(在python2中)来逐个获取元素。该类或该类的实例称为迭代器。

从文档:

迭代器的使用遍及并统一了Python。在后台,for语句在容器对象上调用iter()。该函数返回一个迭代器对象,该对象定义了__next__()方法,该方法每次访问容器中的一个元素。当没有更多的元素时,__next__()会引发一个StopIteration异常,告诉for循环终止。你可以使用next()内置函数调用__next__()方法;这个例子展示了它是如何工作的:

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> next(it)
'a'
>>> next(it)
'b'
>>> next(it)
'c'
>>> next(it)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
    next(it)
StopIteration

一个类的前:-

class Reverse:
    """Iterator for looping over a sequence backwards."""
    def __init__(self, data):
        self.data = data
        self.index = len(data)
    def __iter__(self):
        return self
    def __next__(self):
        if self.index == 0:
            raise StopIteration
        self.index = self.index - 1
        return self.data[self.index]


>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
...     print(char)
...
m
a
p
s

迭代是一个通用术语,指一个接一个地获取某物的每一项。任何时候使用循环,显式或隐式,遍历一组项,这就是迭代。

在Python中,iterable和iterator有特定的含义。

iterable是一个具有__iter__方法的对象,该方法返回一个迭代器,或者定义了__getitem__方法,该方法可以接受从0开始的顺序索引(并在索引不再有效时引发IndexError)。iterable是一个你可以从中获取迭代器的对象。

迭代器是具有next (Python 2)或__next__ (Python 3)方法的对象。

无论何时在Python中使用for循环、map或列表推导式等,都会自动调用下一个方法从迭代器中获取每一项,从而完成迭代过程。

开始学习的一个好地方是教程的迭代器部分和标准类型页面的迭代器类型部分。在您理解了基础知识之后,请尝试函数式编程HOWTO中的迭代器部分。

这是另一个使用collections.abc的视图。这个视图在第二次或以后可能会有用。

从集合。ABC我们可以看到下面的层次结构:

builtins.object
    Iterable
        Iterator
            Generator

例如,Generator是由Iterator派生的Iterable是由基对象派生的。

因此,

Every iterator is an iterable, but not every iterable is an iterator. For example, [1, 2, 3] and range(10) are iterables, but not iterators. x = iter([1, 2, 3]) is an iterator and an iterable. A similar relationship exists between Iterator and Generator. Calling iter() on an iterator or a generator returns itself. Thus, if it is an iterator, then iter(it) is it is True. Under the hood, a list comprehension like [2 * x for x in nums] or a for loop like for x in nums:, acts as though iter() is called on the iterable (nums) and then iterates over nums using that iterator. Hence, all of the following are functionally equivalent (with, say, nums=[1, 2, 3]): for x in nums: for x in iter(nums): for x in iter(iter(nums)): for x in iter(iter(iter(iter(iter(nums))))):