Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?
当前回答
对我来说,Python的glossery对这些问题最有帮助,例如对于iterable,它说:
每次能够返回一个成员的对象。可迭代对象的例子包括所有序列类型(如list、str和tuple)和一些非序列类型,如dict、文件对象,以及使用iter()方法或使用实现sequence语义的getitem()方法定义的任何类的对象。
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and generator.
其他回答
其他人已经全面地解释了什么是iterable和iterator,所以我将尝试对生成器做同样的事情。
恕我直言,理解生成器的主要问题是“生成器”这个词的混淆用法,因为这个词有两种不同的含义:
作为创建(生成)迭代器的工具, 以返回迭代器的函数形式(即在函数体中包含yield语句), 以生成器表达式的形式 作为使用该工具的结果,即结果迭代器。 (在这个意思中,生成器是迭代器的一种特殊形式——“generator”这个词指出了这个迭代器是如何创建的。)
Generator作为第一种工具:
In[2]: def my_generator():
...: yield 100
...: yield 200
In[3]: my_generator
输出[3]:<function __main__.my_generator()> .my_generator(
In[4]: type(my_generator)
[4]:函数
生成器作为使用此工具的结果(即迭代器):
In[5]: my_iterator = my_generator()
In[6]: my_iterator
输出[6]:<生成器对象my_generator at 0x00000000053EAE48>
In[7]: type(my_iterator)
[7]:发电机
Generator作为第二种类型的工具-与该工具的结果迭代器难以区分:
In[8]: my_gen_expression = (2 * i for i in (10, 20))
In[9]: my_gen_expression
Out[9]: <generator object <genexpr> at 0x000000000542C048>
In[10]: type(my_gen_expression)
[10]:发电机
iterable是一个具有__iter__()方法的对象。它可以迭代多次,比如list()和tuple()。
迭代器是进行迭代的对象。它由__iter__()方法返回,通过自己的__iter__()方法返回自身,并有一个next()方法(3.x中的__next__())。
迭代是调用next()响应的过程。__next__()直到引发StopIteration。
例子:
>>> a = [1, 2, 3] # iterable
>>> b1 = iter(a) # iterator 1
>>> b2 = iter(a) # iterator 2, independent of b1
>>> next(b1)
1
>>> next(b1)
2
>>> next(b2) # start over, as it is the first call to b2
1
>>> next(b1)
3
>>> next(b1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>> b1 = iter(a) # new one, start over
>>> next(b1)
1
在处理可迭代对象和迭代器之前,决定可迭代对象和迭代器的主要因素是序列
序列:序列是数据的集合
Iterable: Iterable是支持__iter__方法的序列类型对象。
Iter方法:Iter方法以序列为输入,创建一个对象,称为迭代器
迭代器:迭代器是调用next方法和横向遍历序列的对象。在调用下一个方法时,它返回当前遍历的对象。
例子:
x=[1,2,3,4]
X是一个由数据集合组成的序列
y=iter(x)
在调用iter(x)时,只有当x对象有iter方法时,它才会返回一个迭代器,否则会引发异常。如果返回迭代器,则y的赋值如下:
y=[1,2,3,4]
因为y是一个迭代器,所以它支持next()方法
在调用next方法时,它逐个返回列表中的各个元素。
返回序列的最后一个元素后,如果再次调用下一个方法,将引发StopIteration错误
例子:
>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration
以下是我在教授Python课程时使用的解释:
ITERABLE是:
任何可以循环的东西(例如,你可以循环一个字符串或文件)或 任何可以出现在for循环右边的东西:for x in iterable:…或 任何你可以用iter()调用并返回ITERATOR: iter(obj)或 一个定义__iter__的对象,该对象返回一个新的ITERATOR, 或者它可能有一个适合索引查找的__getitem__方法。
ITERATOR是一个对象:
在迭代过程中,state会记住它的位置, 使用__next__方法: 返回迭代中的下一个值 更新状态以指向下一个值 信号,当它完成时,引发StopIteration 并且它是可自迭代的(意味着它有一个返回self的__iter__方法)。
注:
Python 3中的__next__方法在Python 2中拼写为next,并且 内置函数next()在传递给它的对象上调用该方法。
例如:
>>> s = 'cat' # s is an ITERABLE
# s is a str object that is immutable
# s has no state
# s has a __getitem__() method
>>> t = iter(s) # t is an ITERATOR
# t has state (it starts by pointing at the "c"
# t has a next() method and an __iter__() method
>>> next(t) # the next() function returns the next value and advances the state
'c'
>>> next(t) # the next() function returns the next value and advances
'a'
>>> next(t) # the next() function returns the next value and advances
't'
>>> next(t) # next() raises StopIteration to signal that iteration is complete
Traceback (most recent call last):
...
StopIteration
>>> iter(t) is t # the iterator is self-iterable
iterable是一个具有iter()方法的对象,该方法返回一个迭代器。这是可以循环的。 示例:列表是可迭代的,因为我们可以遍历列表BUT不是迭代器 迭代器是一个可以从中获取迭代器的对象。它是一个具有状态的对象,以便在迭代过程中记住它所处的位置
要查看对象是否有iter()方法,可以使用下面的函数。
ls = ['hello','bye']
print(dir(ls))
输出
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
正如你所看到的有iter(),这意味着它是一个可迭代对象,但不包含next()方法,这是迭代器对象的一个特征
无论何时在Python中使用for循环或map或列表推导式,都会自动调用next方法以从迭代中获取每一项
推荐文章
- 在每个列表元素上调用int()函数?
- 当使用代码存储库时,如何引用资源的相对路径
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 如何消除数独方块的凹凸缺陷?
- 为什么标准迭代器范围是[begin, end]而不是[begin, end]?
- 为什么出现这个UnboundLocalError(闭包)?
- 使用Python请求的异步请求
- 覆盖或覆盖