我有以下虚拟测试脚本:
函数测试(){变量x=0.1*0.2;document.write(x);}测试();
这将打印结果0.020000000000000004,而它应该只打印0.02(如果您使用计算器)。据我所知,这是由于浮点乘法精度的错误。
有没有人有一个好的解决方案,在这种情况下,我得到了正确的结果0.02?我知道还有一些函数,比如toFixed或舍入,这是另一种可能,但我真的希望在不进行任何切割和舍入的情况下打印整个数字。我只是想知道你们中的一个人是否有一些好的、优雅的解决方案。
当然,否则我会舍入到10位数左右。
首先将两个数字都设为整数,执行表达式,然后对结果进行除法运算,以返回小数点:
function evalMathematicalExpression(a, b, op) {
const smallest = String(a < b ? a : b);
const factor = smallest.length - smallest.indexOf('.');
for (let i = 0; i < factor; i++) {
b *= 10;
a *= 10;
}
a = Math.round(a);
b = Math.round(b);
const m = 10 ** factor;
switch (op) {
case '+':
return (a + b) / m;
case '-':
return (a - b) / m;
case '*':
return (a * b) / (m ** 2);
case '/':
return a / b;
}
throw `Unknown operator ${op}`;
}
几个操作的结果(排除的数字是eval的结果):
0.1 + 0.002 = 0.102 (0.10200000000000001)
53 + 1000 = 1053 (1053)
0.1 - 0.3 = -0.2 (-0.19999999999999998)
53 - -1000 = 1053 (1053)
0.3 * 0.0003 = 0.00009 (0.00008999999999999999)
100 * 25 = 2500 (2500)
0.9 / 0.03 = 30 (30.000000000000004)
100 / 50 = 2 (2)
从我的角度来看,这里的想法是将fp数舍入,以便获得一个漂亮/简短的默认字符串表示。
53位有效位精度提供15到17位有效小数位数精度(2−53≈1.11×10−16)。如果具有最多15个有效数字的十进制字符串被转换为IEEE 754双精度表示,然后转换回具有相同位数的十进制字符串,最终结果应与原始字符串匹配。如果IEEE 754双精度数字被转换为具有至少17个有效数字的十进制字符串,然后转换回双精度表示,最终结果必须与原始数字匹配。...由于分数(F)有效位的52位出现在内存格式中,因此总精度为53位(约16位小数,53 log10(2)≈15.955)。。。维基百科
(0.1).toPrecision(100) ->
0.1000000000000000055511151231257827021181583404541015625000000000000000000000000000000000000000000000
(0.1+0.2).toPrecision(100) ->
0.3000000000000000444089209850062616169452667236328125000000000000000000000000000000000000000000000000
然后,据我所知,我们可以将值四舍五入到15位,以保持良好的字符串表示。
10**Math.floor(53 * Math.log10(2)) // 1e15
eg.
Math.round((0.2+0.1) * 1e15 ) / 1e15
0.3
(Math.round((0.2+0.1) * 1e15 ) / 1e15).toPrecision(100)
0.2999999999999999888977697537484345957636833190917968750000000000000000000000000000000000000000000000
功能如下:
function roundNumberToHaveANiceDefaultStringRepresentation(num) {
const integerDigits = Math.floor(Math.log10(Math.abs(num))+1);
const mult = 10**(15-integerDigits); // also consider integer digits
return Math.round(num * mult) / mult;
}