我正在运行一个程序,它正在处理3万个类似的文件。随机数量的它们停止并产生此错误…

  File "C:\Importer\src\dfman\importer.py", line 26, in import_chr
    data = pd.read_csv(filepath, names=fields)
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 400, in parser_f
    return _read(filepath_or_buffer, kwds)
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 205, in _read
    return parser.read()
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 608, in read
    ret = self._engine.read(nrows)
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 1028, in read
    data = self._reader.read(nrows)
  File "parser.pyx", line 706, in pandas.parser.TextReader.read (pandas\parser.c:6745)
  File "parser.pyx", line 728, in pandas.parser.TextReader._read_low_memory (pandas\parser.c:6964)
  File "parser.pyx", line 804, in pandas.parser.TextReader._read_rows (pandas\parser.c:7780)
  File "parser.pyx", line 890, in pandas.parser.TextReader._convert_column_data (pandas\parser.c:8793)
  File "parser.pyx", line 950, in pandas.parser.TextReader._convert_tokens (pandas\parser.c:9484)
  File "parser.pyx", line 1026, in pandas.parser.TextReader._convert_with_dtype (pandas\parser.c:10642)
  File "parser.pyx", line 1046, in pandas.parser.TextReader._string_convert (pandas\parser.c:10853)
  File "parser.pyx", line 1278, in pandas.parser._string_box_utf8 (pandas\parser.c:15657)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xda in position 6: invalid    continuation byte

这些文件的来源/创建都来自同一个地方。纠正这个问题以继续导入的最佳方法是什么?


当前回答

尝试改变编码。 在我的例子中,encoding = "utf-16"起作用了。

df = pd.read_csv(“file.csv”,encoding='utf-16')

其他回答

这个问题困扰了我一段时间,我想我应该发布这个问题,因为它是第一个搜索结果。将encoding="iso-8859-1"标签添加到pandas read_csv中不起作用,任何其他编码也不起作用,一直给出UnicodeDecodeError。

如果将文件句柄传递给pd.read_csv(),则需要将encoding属性放在打开的文件上,而不是在read_csv中。事后看来很明显,但这是一个需要追查的微妙错误。

在我的例子中,一个文件具有USC-2 LE BOM编码,根据notepad++。 对于python,它是encoding="utf_16_le"。

希望,这能帮助别人更快地找到答案。

请尝试添加

import pandas as pd
df = pd.read_csv('file.csv', encoding='unicode_escape')

这将有所帮助。为我工作。另外,请确保使用了正确的分隔符和列名。

为了快速加载文件,可以从只加载1000行开始。

你可以试试:

Df = pd.read_csv('./file_name.csv', encoding='gbk')

最简单的解决方案:

import pandas as pd
df = pd.read_csv('file_name.csv', engine='python')

替代解决方案:

崇高的文本:

在Sublime文本编辑器或VS Code中打开csv文件。 以utf-8格式保存。 在sublime中,单击File -> Save with encoding -> UTF-8

VS代码:

在VSCode的底部栏中,您将看到标签UTF-8。点击它。弹出窗口会打开。单击“保存编码”。现在可以为该文件选择新的编码。

然后,您可以像往常一样读取您的文件:

import pandas as pd
data = pd.read_csv('file_name.csv', encoding='utf-8')

其他不同的编码类型有:

encoding = "cp1252"
encoding = "ISO-8859-1"