我正在运行一个程序,它正在处理3万个类似的文件。随机数量的它们停止并产生此错误…

  File "C:\Importer\src\dfman\importer.py", line 26, in import_chr
    data = pd.read_csv(filepath, names=fields)
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 400, in parser_f
    return _read(filepath_or_buffer, kwds)
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 205, in _read
    return parser.read()
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 608, in read
    ret = self._engine.read(nrows)
  File "C:\Python33\lib\site-packages\pandas\io\parsers.py", line 1028, in read
    data = self._reader.read(nrows)
  File "parser.pyx", line 706, in pandas.parser.TextReader.read (pandas\parser.c:6745)
  File "parser.pyx", line 728, in pandas.parser.TextReader._read_low_memory (pandas\parser.c:6964)
  File "parser.pyx", line 804, in pandas.parser.TextReader._read_rows (pandas\parser.c:7780)
  File "parser.pyx", line 890, in pandas.parser.TextReader._convert_column_data (pandas\parser.c:8793)
  File "parser.pyx", line 950, in pandas.parser.TextReader._convert_tokens (pandas\parser.c:9484)
  File "parser.pyx", line 1026, in pandas.parser.TextReader._convert_with_dtype (pandas\parser.c:10642)
  File "parser.pyx", line 1046, in pandas.parser.TextReader._string_convert (pandas\parser.c:10853)
  File "parser.pyx", line 1278, in pandas.parser._string_box_utf8 (pandas\parser.c:15657)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xda in position 6: invalid    continuation byte

这些文件的来源/创建都来自同一个地方。纠正这个问题以继续导入的最佳方法是什么?


当前回答

你可以试试这个。

import csv
import pandas as pd
df = pd.read_csv(filepath,encoding='unicode_escape')

其他回答

试试这个:

import pandas as pd
with open('filename.csv') as f:
    data = pd.read_csv(f)

看起来它会处理编码,而不会通过参数显式地表示它

I am posting an answer to provide an updated solution and explanation as to why this problem can occur. Say you are getting this data from a database or Excel workbook. If you have special characters like La Cañada Flintridge city, well unless you are exporting the data using UTF-8 encoding, you're going to introduce errors. La Cañada Flintridge city will become La Ca\xf1ada Flintridge city. If you are using pandas.read_csv without any adjustments to the default parameters, you'll hit the following error

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xf1 in position 5: invalid continuation byte

幸运的是,有一些解决方案。

选项1,修复导出。确保使用UTF-8编码。

选项2,如果您无法修复导出问题,并且需要使用pandas。Read_csv,请确保包含以下参数,engine='python'。默认情况下,pandas使用engine='C',这非常适合读取大的干净文件,但如果出现任何意外情况,则会崩溃。根据我的经验,设置encoding='utf-8'从来没有修复过这个UnicodeDecodeError。此外,您不需要使用errors_bad_lines,但是,如果您确实需要它,这仍然是一个选项。

pd.read_csv(<your file>, engine='python')

选项3:解决方案是我个人更喜欢的解决方案。使用普通Python读取文件。

import pandas as pd

data = []

with open(<your file>, "rb") as myfile:
    # read the header seperately
    # decode it as 'utf-8', remove any special characters, and split it on the comma (or deliminator)
    header = myfile.readline().decode('utf-8').replace('\r\n', '').split(',')
    # read the rest of the data
    for line in myfile:
        row = line.decode('utf-8', errors='ignore').replace('\r\n', '').split(',')
        data.append(row)

# save the data as a dataframe
df = pd.DataFrame(data=data, columns = header)

希望这对第一次遇到这个问题的人有所帮助。

Read_csv接受一个编码选项来处理不同格式的文件。我主要使用read_csv('file', encoding = "ISO-8859-1"),或者encoding = "utf-8"用于读取,通常utf-8用于to_csv。

你也可以使用一些别名选项,如'latin'或'cp1252' (Windows),而不是'ISO-8859-1'(参见python文档,也可以了解您可能遇到的许多其他编码)。

参见相关熊猫文件, 关于csv文件的python文档示例,以及大量关于SO的相关问题。一个很好的背景资源是每个开发人员都应该知道unicode和字符集。

要检测编码(假设文件包含非ascii字符),可以使用enca(参见手册页)或file -i (linux)或file -i (osx)(参见手册页)。

最简单的解决方案:

import pandas as pd
df = pd.read_csv('file_name.csv', engine='python')

替代解决方案:

崇高的文本:

在Sublime文本编辑器或VS Code中打开csv文件。 以utf-8格式保存。 在sublime中,单击File -> Save with encoding -> UTF-8

VS代码:

在VSCode的底部栏中,您将看到标签UTF-8。点击它。弹出窗口会打开。单击“保存编码”。现在可以为该文件选择新的编码。

然后,您可以像往常一样读取您的文件:

import pandas as pd
data = pd.read_csv('file_name.csv', encoding='utf-8')

其他不同的编码类型有:

encoding = "cp1252"
encoding = "ISO-8859-1"

在传递给熊猫之前检查编码。它会让你慢下来,但是……

with open(path, 'r') as f:
    encoding = f.encoding 

df = pd.read_csv(path,sep=sep, encoding=encoding)

在python 3.7中