我正在寻找一种优雅的方式来获得数据使用属性访问字典与一些嵌套的字典和列表(即javascript风格的对象语法)。

例如:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}

应该以这样的方式访问:

>>> x = dict2obj(d)
>>> x.a
1
>>> x.b.c
2
>>> x.d[1].foo
bar

我想,如果没有递归,这是不可能的,但是有什么更好的方法来获得字典的对象样式呢?


当前回答

下面是一个使用namedtuple的嵌套就绪版本:

from collections import namedtuple

class Struct(object):
    def __new__(cls, data):
        if isinstance(data, dict):
            return namedtuple(
                'Struct', data.iterkeys()
            )(
                *(Struct(val) for val in data.values())
            )
        elif isinstance(data, (tuple, list, set, frozenset)):
            return type(data)(Struct(_) for _ in data)
        else:
            return data

=>

>>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
>>> s = Struct(d)
>>> s.d
['hi', Struct(foo='bar')]
>>> s.d[0]
'hi'
>>> s.d[1].foo
'bar'

其他回答

这是另一种将字典列表转换为对象的替代方法:

def dict2object(in_dict):
    class Struct(object):
        def __init__(self, in_dict):
            for key, value in in_dict.items():
                if isinstance(value, (list, tuple)):
                    setattr(
                        self, key,
                        [Struct(sub_dict) if isinstance(sub_dict, dict)
                         else sub_dict for sub_dict in value])
                else:
                    setattr(
                        self, key,
                        Struct(value) if isinstance(value, dict)
                        else value)
    return [Struct(sub_dict) for sub_dict in in_dict] \
        if isinstance(in_dict, list) else Struct(in_dict)

你可以用我的方法来处理。

somedict= {"person": {"name": "daniel"}}

class convertor:
    def __init__(self, dic: dict) -> object:
        self.dict = dic

        def recursive_check(obj):
            for key, value in dic.items():
                if isinstance(value, dict):
                    value= convertor(value)
                setattr(obj, key, value)
        recursive_check(self)
my_object= convertor(somedict)

print(my_object.person.name)

如果只是将dict赋值给一个空对象的__dict__呢?

class Object:
    """If your dict is "flat", this is a simple way to create an object from a dict

    >>> obj = Object()
    >>> obj.__dict__ = d
    >>> d.a
    1
    """
    pass

当然,这在你嵌套的dict例子上失败了,除非你递归地遍历dict:

# For a nested dict, you need to recursively update __dict__
def dict2obj(d):
    """Convert a dict to an object

    >>> d = {'a': 1, 'b': {'c': 2}, 'd': ["hi", {'foo': "bar"}]}
    >>> obj = dict2obj(d)
    >>> obj.b.c
    2
    >>> obj.d
    ["hi", {'foo': "bar"}]
    """
    try:
        d = dict(d)
    except (TypeError, ValueError):
        return d
    obj = Object()
    for k, v in d.iteritems():
        obj.__dict__[k] = dict2obj(v)
    return obj

你的例子列表元素可能是一个映射,一个(键,值)对的列表,像这样:

>>> d = {'a': 1, 'b': {'c': 2}, 'd': [("hi", {'foo': "bar"})]}
>>> obj = dict2obj(d)
>>> obj.d.hi.foo
"bar"

这也很有效

class DObj(object):
    pass

dobj = Dobj()
dobj.__dict__ = {'a': 'aaa', 'b': 'bbb'}

print dobj.a
>>> aaa
print dobj.b
>>> bbb

我知道这里已经有很多答案了,我迟到了,但这个方法将递归和“就地”将字典转换为类对象结构……适用于3.x.x

def dictToObject(d):
    for k,v in d.items():
        if isinstance(v, dict):
            d[k] = dictToObject(v)
    return namedtuple('object', d.keys())(*d.values())

# Dictionary created from JSON file
d = {
    'primaryKey': 'id', 
    'metadata': 
        {
            'rows': 0, 
            'lastID': 0
        }, 
    'columns': 
        {
            'col2': {
                'dataType': 'string', 
                'name': 'addressLine1'
            }, 
            'col1': {
                'datatype': 'string', 
                'name': 'postcode'
            }, 
            'col3': {
                'dataType': 'string', 
                'name': 'addressLine2'
            }, 
            'col0': {
                'datatype': 'integer', 
                'name': 'id'
            }, 
            'col4': {
                'dataType': 'string', 
                'name': 'contactNumber'
            }
        }, 
        'secondaryKeys': {}
}

d1 = dictToObject(d)
d1.columns.col1 # == object(datatype='string', name='postcode')
d1.metadata.rows # == 0