按数组中的对象分组最有效的方法是什么?

例如,给定此对象数组:

[ 
    { Phase: "Phase 1", Step: "Step 1", Task: "Task 1", Value: "5" },
    { Phase: "Phase 1", Step: "Step 1", Task: "Task 2", Value: "10" },
    { Phase: "Phase 1", Step: "Step 2", Task: "Task 1", Value: "15" },
    { Phase: "Phase 1", Step: "Step 2", Task: "Task 2", Value: "20" },
    { Phase: "Phase 2", Step: "Step 1", Task: "Task 1", Value: "25" },
    { Phase: "Phase 2", Step: "Step 1", Task: "Task 2", Value: "30" },
    { Phase: "Phase 2", Step: "Step 2", Task: "Task 1", Value: "35" },
    { Phase: "Phase 2", Step: "Step 2", Task: "Task 2", Value: "40" }
]

我正在表格中显示这些信息。我想通过不同的方法进行分组,但我想对值求和。

我将Undercore.js用于其groupby函数,这很有用,但并不能完成全部任务,因为我不希望它们“拆分”,而是“合并”,更像SQL groupby方法。

我要找的是能够合计特定值(如果需要)。

因此,如果我按阶段分组,我希望收到:

[
    { Phase: "Phase 1", Value: 50 },
    { Phase: "Phase 2", Value: 130 }
]

如果我组了阶段/步骤,我会收到:

[
    { Phase: "Phase 1", Step: "Step 1", Value: 15 },
    { Phase: "Phase 1", Step: "Step 2", Value: 35 },
    { Phase: "Phase 2", Step: "Step 1", Value: 55 },
    { Phase: "Phase 2", Step: "Step 2", Value: 75 }
]

是否有一个有用的脚本,或者我应该坚持使用Undercore.js,然后遍历生成的对象,自己计算总数?


当前回答

在Joseph Nields的回答之后,有一个polyfill用于将对象分组https://github.com/padcom/array-prototype-functions#arrayprototypegroupbyfieldormapper.因此,您可能希望使用现有的内容,而不是一次又一次地编写这些内容。

其他回答

下面的函数允许对任意字段进行groupBy(和求和值-OP需要的)。在解决方案中,我们定义cmp函数来根据分组字段比较两个对象。在设w=。。。我们创建子集对象x字段的副本。在y[sumBy]=+y[sumBy]+(+x[sumBy])中,我们使用“+”将字符串转换为数字。

function groupBy(data, fields, sumBy='Value') {
  let r=[], cmp= (x,y) => fields.reduce((a,b)=> a && x[b]==y[b], true);
  data.forEach(x=> {
    let y=r.find(z=>cmp(x,z));
    let w= [...fields,sumBy].reduce((a,b) => (a[b]=x[b],a), {})
    y ? y[sumBy]=+y[sumBy]+(+x[sumBy]) : r.push(w);
  });
  return r;
}

常量d=[{阶段:“阶段1”,步骤:“步骤1”,任务:“任务1”,值:“5”},{阶段:“阶段1”,步骤:“步骤1”,任务:“任务2”,值:“10”},{阶段:“阶段1”,步骤:“步骤2”,任务:“任务1”,值:“15”},{阶段:“阶段1”,步骤:“步骤2”,任务:“任务2”,值:“20”},{阶段:“阶段2”,步骤:“步骤1”,任务:“任务1”,值:“25”},{阶段:“阶段2”,步骤:“步骤1”,任务:“任务2”,值:“30”},{阶段:“阶段2”,步骤:“步骤2”,任务:“任务1”,值:“35”},{阶段:“阶段2”,步骤:“步骤2”,任务:“任务2”,值:“40”}];函数groupBy(数据,字段,sumBy='Value'){设r=[],cmp=(x,y)=>fields.reduce((a,b)=>a&&x[b]==y[b],true);data.forEach(x=>{设y=r.find(z=>cmp(x,z));设w=[…fields,sumBy].reduce((a,b)=>(a[b]=x[b],a),{})yy[sumBy]=+y[sumBy]+(+x[sumBy]):r.push(w);});返回r;}//测试let p=(t,o)=>console.log(t,JSON.stringify(o));console.log('GROUP BY:');p(“相”,组By(d,[“相”]));p(“步骤”,组By(d,[“步骤”]));p(“阶段-步骤”,组By(d,[“阶段”,“步骤”]));p(“阶段任务”,groupBy(d,[“阶段”,“任务”]));p(“步骤任务”,groupBy(d,[“步骤”,“任务”]));p(“阶段-步骤-任务”,groupBy(d,[“阶段”,“步骤”,“任务”]));

使用ES6的简单解决方案:

该方法有一个返回模型,可以比较n个财产。

const compareKey = (item, key, compareItem) => {
    return item[key] === compareItem[key]
}

const handleCountingRelatedItems = (listItems, modelCallback, compareKeyCallback) => {
    return listItems.reduce((previousValue, currentValue) => {
        if (Array.isArray(previousValue)) {
        const foundIndex = previousValue.findIndex(item => compareKeyCallback(item, currentValue))

        if (foundIndex > -1) {
            const count = previousValue[foundIndex].count + 1

            previousValue[foundIndex] = modelCallback(currentValue, count)

            return previousValue
        }

        return [...previousValue, modelCallback(currentValue, 1)]
        }

        if (compareKeyCallback(previousValue, currentValue)) {
        return [modelCallback(currentValue, 2)]
        }

        return [modelCallback(previousValue, 1), modelCallback(currentValue, 1)]
    })
}

const itemList = [
    { type: 'production', human_readable: 'Production' },
    { type: 'test', human_readable: 'Testing' },
    { type: 'production', human_readable: 'Production' }
]

const model = (currentParam, count) => ({
    label: currentParam.human_readable,
    type: currentParam.type,
    count
})

const compareParameter = (item, compareValue) => {
    const isTypeEqual = compareKey(item, 'type', compareValue)
    return isTypeEqual
}

const result = handleCountingRelatedItems(itemList, model, compareParameter)

 console.log('Result: \n', result)
/** Result: 
    [
        { label: 'Production', type: 'production', count: 2 },
        { label: 'Testing', type: 'testing', count: 1 }
    ]
*/

如果希望避免使用外部库,可以简洁地实现groupBy()的普通版本,如下所示:

var groupBy=函数(xs,key){返回xs.reduce(函数(rv,x){(rv[x[key]]=rv[x[键]]| |[]).push(x);返回rv;}, {});};console.log(groupBy(['one','two','three'],'length'));//=>{“3”:[“1”,“2”],“5”:[”3“]}

var newArr = data.reduce((acc, cur) => {
    const existType = acc.find(a => a.Phase === cur.Phase);
    if (existType) {
        existType.Value += +cur.Value;
        return acc;
    }

    acc.push({
        Phase: cur.Phase,
        Value: +cur.Value
    });
    return acc;
}, []);

具有排序功能

export const groupBy = function groupByArray(xs, key, sortKey) {
      return xs.reduce(function(rv, x) {
        let v = key instanceof Function ? key(x) : x[key];
        let el = rv.find(r => r && r.key === v);

        if (el) {
          el.values.push(x);
          el.values.sort(function(a, b) {
            return a[sortKey].toLowerCase().localeCompare(b[sortKey].toLowerCase());
          });
        } else {
          rv.push({ key: v, values: [x] });
        }

        return rv;
      }, []);
    };

示例:

var state = [
    {
      name: "Arkansas",
      population: "2.978M",
      flag:
  "https://upload.wikimedia.org/wikipedia/commons/9/9d/Flag_of_Arkansas.svg",
      category: "city"
    },{
      name: "Crkansas",
      population: "2.978M",
      flag:
        "https://upload.wikimedia.org/wikipedia/commons/9/9d/Flag_of_Arkansas.svg",
      category: "city"
    },
    {
      name: "Balifornia",
      population: "39.14M",
      flag:
        "https://upload.wikimedia.org/wikipedia/commons/0/01/Flag_of_California.svg",
      category: "city"
    },
    {
      name: "Florida",
      population: "20.27M",
      flag:
        "https://upload.wikimedia.org/wikipedia/commons/f/f7/Flag_of_Florida.svg",
      category: "airport"
    },
    {
      name: "Texas",
      population: "27.47M",
      flag:
        "https://upload.wikimedia.org/wikipedia/commons/f/f7/Flag_of_Texas.svg",
      category: "landmark"
    }
  ];
console.log(JSON.stringify(groupBy(state,'category','name')));