我在Python中有两个列表:
temp1 = ['One', 'Two', 'Three', 'Four']
temp2 = ['One', 'Two']
假设每个列表中的元素都是唯一的,我想用第一个列表中的项创建第三个列表,这些项不在第二个列表中:
temp3 = ['Three', 'Four']
有没有没有周期和检查的快速方法?
我在Python中有两个列表:
temp1 = ['One', 'Two', 'Three', 'Four']
temp2 = ['One', 'Two']
假设每个列表中的元素都是唯一的,我想用第一个列表中的项创建第三个列表,这些项不在第二个列表中:
temp3 = ['Three', 'Four']
有没有没有周期和检查的快速方法?
当前回答
如果您想要更类似于变更集的东西……可以使用Counter
from collections import Counter
def diff(a, b):
""" more verbose than needs to be, for clarity """
ca, cb = Counter(a), Counter(b)
to_add = cb - ca
to_remove = ca - cb
changes = Counter(to_add)
changes.subtract(to_remove)
return changes
lista = ['one', 'three', 'four', 'four', 'one']
listb = ['one', 'two', 'three']
In [127]: diff(lista, listb)
Out[127]: Counter({'two': 1, 'one': -1, 'four': -2})
# in order to go from lista to list b, you need to add a "two", remove a "one", and remove two "four"s
In [128]: diff(listb, lista)
Out[128]: Counter({'four': 2, 'one': 1, 'two': -1})
# in order to go from listb to lista, you must add two "four"s, add a "one", and remove a "two"
其他回答
这里有一些简单的、保持顺序的方法来区分两个字符串列表。
Code
使用pathlib的一个不寻常的方法:
import pathlib
temp1 = ["One", "Two", "Three", "Four"]
temp2 = ["One", "Two"]
p = pathlib.Path(*temp1)
r = p.relative_to(*temp2)
list(r.parts)
# ['Three', 'Four']
这假设两个列表包含相同开头的字符串。更多细节请参阅文档。注意,与set操作相比,它不是特别快。
使用itertools.zip_longest的直接实现:
import itertools as it
[x for x, y in it.zip_longest(temp1, temp2) if x != y]
# ['Three', 'Four']
如果你想要递归的区别,我写了一个python包: https://github.com/seperman/deepdiff
安装
从PyPi安装:
pip install deepdiff
示例使用
进口
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function # In case running on Python 2
同一对象返回空
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> print(DeepDiff(t1, t2))
{}
项目类型发生变化
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> pprint(DeepDiff(t1, t2), indent=2)
{ 'type_changes': { 'root[2]': { 'newtype': <class 'str'>,
'newvalue': '2',
'oldtype': <class 'int'>,
'oldvalue': 2}}}
某项的值已更改
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> pprint(DeepDiff(t1, t2), indent=2)
{'values_changed': {'root[2]': {'newvalue': 4, 'oldvalue': 2}}}
项目添加和/或删除
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff)
{'dic_item_added': ['root[5]', 'root[6]'],
'dic_item_removed': ['root[4]'],
'values_changed': {'root[2]': {'newvalue': 4, 'oldvalue': 2}}}
字符串的区别
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'values_changed': { 'root[2]': {'newvalue': 4, 'oldvalue': 2},
"root[4]['b']": { 'newvalue': 'world!',
'oldvalue': 'world'}}}
字符串差2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'values_changed': { "root[4]['b']": { 'diff': '--- \n'
'+++ \n'
'@@ -1,5 +1,4 @@\n'
'-world!\n'
'-Goodbye!\n'
'+world\n'
' 1\n'
' 2\n'
' End',
'newvalue': 'world\n1\n2\nEnd',
'oldvalue': 'world!\n'
'Goodbye!\n'
'1\n'
'2\n'
'End'}}}
>>>
>>> print (ddiff['values_changed']["root[4]['b']"]["diff"])
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
类型变化
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'type_changes': { "root[4]['b']": { 'newtype': <class 'str'>,
'newvalue': 'world\n\n\nEnd',
'oldtype': <class 'list'>,
'oldvalue': [1, 2, 3]}}}
列表的区别
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3, 4]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{'iterable_item_removed': {"root[4]['b'][2]": 3, "root[4]['b'][3]": 4}}
差异2:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2, 3]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'iterable_item_added': {"root[4]['b'][3]": 3},
'values_changed': { "root[4]['b'][1]": {'newvalue': 3, 'oldvalue': 2},
"root[4]['b'][2]": {'newvalue': 2, 'oldvalue': 3}}}
列出差异忽略顺序或重复项:(使用与上面相同的字典)
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2, 3]}}
>>> ddiff = DeepDiff(t1, t2, ignore_order=True)
>>> print (ddiff)
{}
包含字典的列表:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': {"root[4]['b'][2][1]": {'newvalue': 3, 'oldvalue': 1}}}
集:
>>> t1 = {1, 2, 8}
>>> t2 = {1, 2, 3, 5}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (DeepDiff(t1, t2))
{'set_item_added': ['root[3]', 'root[5]'], 'set_item_removed': ['root[8]']}
叫元组:
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> t1 = Point(x=11, y=22)
>>> t2 = Point(x=11, y=23)
>>> pprint (DeepDiff(t1, t2))
{'values_changed': {'root.y': {'newvalue': 23, 'oldvalue': 22}}}
自定义对象:
>>> class ClassA(object):
... a = 1
... def __init__(self, b):
... self.b = b
...
>>> t1 = ClassA(1)
>>> t2 = ClassA(2)
>>>
>>> pprint(DeepDiff(t1, t2))
{'values_changed': {'root.b': {'newvalue': 2, 'oldvalue': 1}}}
对象属性添加:
>>> t2.c = "new attribute"
>>> pprint(DeepDiff(t1, t2))
{'attribute_added': ['root.c'],
'values_changed': {'root.b': {'newvalue': 2, 'oldvalue': 1}}}
您可以循环遍历第一个列表,对于不在第二个列表中但在第一个列表中的每一项,将其添加到第三个列表中。例句:
temp3 = []
for i in temp1:
if i not in temp2:
temp3.append(i)
print(temp3)
两个列表(例如list1和list2)之间的差异可以使用下面的简单函数找到。
def diff(list1, list2):
c = set(list1).union(set(list2)) # or c = set(list1) | set(list2)
d = set(list1).intersection(set(list2)) # or d = set(list1) & set(list2)
return list(c - d)
or
def diff(list1, list2):
return list(set(list1).symmetric_difference(set(list2))) # or return list(set(list1) ^ set(list2))
通过使用上述函数,可以使用diff(temp2, temp1)或diff(temp1, temp2)找到差异。两者都会给出结果['Four', 'Three']。你不需要担心列表的顺序或者先给出哪个列表。
Python文档参考
我在这个游戏中有点晚了,但你可以做一个性能的比较,上面提到的一些代码和这个,两个最快的竞争者是,
list(set(x).symmetric_difference(set(y)))
list(set(x) ^ set(y))
我为我的初级编码水平道歉。
import time
import random
from itertools import filterfalse
# 1 - performance (time taken)
# 2 - correctness (answer - 1,4,5,6)
# set performance
performance = 1
numberoftests = 7
def answer(x,y,z):
if z == 0:
start = time.clock()
lists = (str(list(set(x)-set(y))+list(set(y)-set(y))))
times = ("1 = " + str(time.clock() - start))
return (lists,times)
elif z == 1:
start = time.clock()
lists = (str(list(set(x).symmetric_difference(set(y)))))
times = ("2 = " + str(time.clock() - start))
return (lists,times)
elif z == 2:
start = time.clock()
lists = (str(list(set(x) ^ set(y))))
times = ("3 = " + str(time.clock() - start))
return (lists,times)
elif z == 3:
start = time.clock()
lists = (filterfalse(set(y).__contains__, x))
times = ("4 = " + str(time.clock() - start))
return (lists,times)
elif z == 4:
start = time.clock()
lists = (tuple(set(x) - set(y)))
times = ("5 = " + str(time.clock() - start))
return (lists,times)
elif z == 5:
start = time.clock()
lists = ([tt for tt in x if tt not in y])
times = ("6 = " + str(time.clock() - start))
return (lists,times)
else:
start = time.clock()
Xarray = [iDa for iDa in x if iDa not in y]
Yarray = [iDb for iDb in y if iDb not in x]
lists = (str(Xarray + Yarray))
times = ("7 = " + str(time.clock() - start))
return (lists,times)
n = numberoftests
if performance == 2:
a = [1,2,3,4,5]
b = [3,2,6]
for c in range(0,n):
d = answer(a,b,c)
print(d[0])
elif performance == 1:
for tests in range(0,10):
print("Test Number" + str(tests + 1))
a = random.sample(range(1, 900000), 9999)
b = random.sample(range(1, 900000), 9999)
for c in range(0,n):
#if c not in (1,4,5,6):
d = answer(a,b,c)
print(d[1])