假设您在Java中有一个链表结构。它由节点组成:
class Node {
Node next;
// some user data
}
每个节点都指向下一个节点,除了最后一个节点,它的next为空。假设有一种可能性,列表可以包含一个循环-即最后的节点,而不是有一个空值,有一个引用到列表中它之前的一个节点。
最好的写作方式是什么
boolean hasLoop(Node first)
如果给定的节点是带有循环的列表的第一个,则返回true,否则返回false ?你怎么能写出一个常数的空间和合理的时间呢?
下面是一个带有循环的列表的图片:
public boolean hasLoop(Node start){
TreeSet<Node> set = new TreeSet<Node>();
Node lookingAt = start;
while (lookingAt.peek() != null){
lookingAt = lookingAt.next;
if (set.contains(lookingAt){
return false;
} else {
set.put(lookingAt);
}
return true;
}
// Inside our Node class:
public Node peek(){
return this.next;
}
请原谅我的无知(我对Java和编程仍然相当陌生),但为什么上面的方法不能工作呢?
I guess this doesn't solve the constant space issue... but it does at least get there in a reasonable time, correct? It will only take the space of the linked list plus the space of a set with n elements (where n is the number of elements in the linked list, or the number of elements until it reaches a loop). And for time, worst-case analysis, I think, would suggest O(nlog(n)). SortedSet look-ups for contains() are log(n) (check the javadoc, but I'm pretty sure TreeSet's underlying structure is TreeMap, whose in turn is a red-black tree), and in the worst case (no loops, or loop at very end), it will have to do n look-ups.
比弗洛伊德的算法好
Richard Brent描述了一种替代周期检测算法,它很像兔子和乌龟(弗洛伊德周期),除了这里的慢节点不移动,但随后会以固定的间隔“传送”到快节点的位置。
该描述可在布伦特的周期检测算法(瞬移海龟)。布伦特声称他的算法比弗洛伊德的循环算法快24%到36%。
O(n)时间复杂度,O(1)空间复杂度。
public static boolean hasLoop(Node root) {
if (root == null) return false;
Node slow = root, fast = root;
int taken = 0, limit = 2;
while (fast.next != null) {
fast = fast.next;
taken++;
if (slow == fast) return true;
if (taken == limit) {
taken = 0;
limit <<= 1; // equivalent to limit *= 2;
slow = fast; // teleporting the turtle (to the hare's position)
}
}
return false;
}