在b-树中,您可以将键和数据存储在内部节点和叶节点中,但在b+树中,您必须仅将数据存储在叶节点中。

在b+树中这样做有什么好处吗?

为什么不在所有地方都使用b-树而不是b+树,因为直觉上它们看起来更快?

我的意思是,为什么需要在b+树中复制键(数据)?


当前回答

The primary distinction between B-tree and B+tree is that B-tree eliminates the redundant storage of search key values.Since search keys are not repeated in the B-tree,we may not be able to store the index using fewer tree nodes than in corresponding B+tree index.However,since search key that appear in non-leaf nodes appear nowhere else in B-tree,we are forced to include an additional pointer field for each search key in a non-leaf node. Their are space advantages for B-tree, as repetition does not occur and can be used for large indices.

其他回答

定义“快得多”。渐近地它们是相同的。不同之处在于它们如何使用二级存储。维基百科上关于B-树和B+树的文章看起来相当可信。

由于终端节点形成了一个链表,B+树更容易进行全面扫描,而且性能更高,可以查看树索引的每一块数据。要使用B-Tree进行完整扫描,您需要进行完整的树遍历以查找所有数据。

另一方面,当您执行seek(按键查找特定数据段)时,B-Trees可以更快,特别是当树驻留在RAM或其他非块存储中时。由于可以提升树中常用的节点,因此获取数据所需的比较较少。

B+树尤其适用于基于块的存储(例如:硬盘)。考虑到这一点,你会得到几个优势,例如(从我的脑海中):

high fanout / low depth: that means you have to get less blocks to get to the data. with data intermingled with the pointers, each read gets less pointers, so you need more seeks to get to the data simple and consistent block storage: an inner node has N pointers, nothing else, a leaf node has data, nothing else. that makes it easy to parse, debug and even reconstruct. high key density means the top nodes are almost certainly on cache, in many cases all inner nodes get quickly cached, so only the data access has to go to disk.

B+树是一种平衡的树,其中从树的根到叶子的每条路径都是相同的长度,树的每个非叶子节点都有[n/2]到[n]个子节点,其中n对于特定的树是固定的。它包含索引页和数据页。 二叉树的每个父节点只有两个子节点,而B+树的每个父节点可以有不同数量的子节点

**

B-Tree的主要缺点是遍历键的难度 按顺序。B+树保留了的快速随机访问属性 b -树,同时也允许快速顺序访问

** 参考:Data Structures Using C//作者:Aaro M Tenenbaum

http://books.google.co.in/books?id=X0Cd1Pr2W0gC&pg=PA456&lpg=PA456&dq=drawback+of+B-Tree+is+the+difficulty+of+Traversing+the+keys+sequentially&source=bl&ots=pGcPQSEJMS&sig=F9MY7zEXYAMVKl_Sg4W-0LTRor8&hl=en&sa=X&ei=nD5AUbeeH4zwrQe12oCYAQ&ved=0CDsQ6AEwAg#v=onepage&q=drawback%20of%20B-Tree%20is%20the%20difficulty%20of%20Traversing%20the%20keys%20sequentially&f=false