最近,我在安装SciPy时遇到了麻烦,特别是在我正在开发的Heroku应用程序上,我发现了Conda。
使用Conda可以创建环境,这与virtualenv的功能非常相似。我的问题是:
如果我使用Conda,它会取代对virtualenv的需求吗?如果不是,我如何将两者结合使用?我是在Conda中安装virtualenv,还是在virtualenv中安装Conda ? 我还需要使用pip吗?如果是这样,我还能在隔离的环境中安装带有pip的包吗?
最近,我在安装SciPy时遇到了麻烦,特别是在我正在开发的Heroku应用程序上,我发现了Conda。
使用Conda可以创建环境,这与virtualenv的功能非常相似。我的问题是:
如果我使用Conda,它会取代对virtualenv的需求吗?如果不是,我如何将两者结合使用?我是在Conda中安装virtualenv,还是在virtualenv中安装Conda ? 我还需要使用pip吗?如果是这样,我还能在隔离的环境中安装带有pip的包吗?
当前回答
另一个新的选择,也是我目前最喜欢的启动和运行环境的方法是Pipenv
它目前是Python.org官方推荐的Python打包工具
其他回答
Conda取代virtualenv。在我看来,这样更好。它不局限于Python,也可以用于其他语言。根据我的经验,它提供了更流畅的体验,特别是对于科学软件包。我第一次在Mac上正确安装MayaVi是用conda。 你仍然可以使用pip。事实上,conda会在每个新环境中安装pip。它知道pip安装包。
例如:
conda list
列出当前环境中所有已安装的包。 conda安装的包显示如下:
sphinx_rtd_theme 0.1.7 py35_0 defaults
通过PIP安装的有< PIP >标记:
wxpython-common 3.0.0.0 <pip>
I use both and (as of Jan, 2020) they have some superficial differences that lend themselves to different usages for me. By default Conda prefers to manage a list of environments for you in a central location, whereas virtualenv makes a folder in the current directory. The former (centralized) makes sense if you are e.g. doing machine learning and just have a couple of broad environments that you use across many projects and want to jump into them from anywhere. The latter (per project folder) makes sense if you are doing little one-off projects that have completely different sets of lib requirements that really belong more to the project itself.
Conda创建的空环境大约是122MB,而virtualenv的大约是12MB,所以这是另一个你可能不喜欢到处散布Conda环境的原因。
最后,Conda更喜欢集中式env的另一个表面迹象是(同样是默认情况),如果您在自己的项目文件夹中创建了Conda env并激活它,那么出现在shell中的名称前缀就是该文件夹的绝对路径(太长了)。你可以通过给它一个名字来解决这个问题,但是默认情况下virtualenv做的是正确的事情。
我预计随着两个包管理器争夺主导地位,这些信息将很快变得陈旧,但这些是今天的权衡:)
编辑:我在2021年4月再次审查了情况,情况没有变化。使用conda安装本地目录仍然很尴尬。
1.不,如果你使用conda,你不需要使用任何其他工具来管理虚拟环境(如venv, virtualenv, pipenv等)。 也许有一些边缘情况conda没有覆盖,但virtualenv(更重量级)覆盖了,但到目前为止我还没有遇到过。
2.是的,您不仅仍然可以使用pip,而且可能不得不使用。conda包存储库包含的内容比pip的要少,所以conda install有时无法找到您正在寻找的包,如果它不是数据科学包,情况就更严重了。 而且,如果我没记错的话,conda的存储库更新速度和频率不如pip,所以如果您想使用软件包的最新版本,pip可能再次成为您的唯一选择。
注意:如果pip命令在conda虚拟环境中不可用,你必须先安装它,通过点击:
Conda安装PIP
是的,conda比virtualenv更容易安装,并且基本上取代了后者。
我在公司工作,在几道防火墙后面的机器上,我没有管理权限
在我有限的python使用经验(2年)中,我遇到过一些库(JayDeBeApi,sasl)在通过pip安装时抛出c++依赖错误 错误:需要Microsoft Visual c++ 14.0。通过“Microsoft Visual c++ Build Tools”获取:http://landinghub.visualstudio.com/visual-cpp-build-tools
这些安装与conda很好,因此,从那些日子起,我开始与conda env合作。 然而,阻止conda在我没有写权限的c.programfiles中安装依赖并不容易。