最近,我在安装SciPy时遇到了麻烦,特别是在我正在开发的Heroku应用程序上,我发现了Conda。
使用Conda可以创建环境,这与virtualenv的功能非常相似。我的问题是:
如果我使用Conda,它会取代对virtualenv的需求吗?如果不是,我如何将两者结合使用?我是在Conda中安装virtualenv,还是在virtualenv中安装Conda ? 我还需要使用pip吗?如果是这样,我还能在隔离的环境中安装带有pip的包吗?
最近,我在安装SciPy时遇到了麻烦,特别是在我正在开发的Heroku应用程序上,我发现了Conda。
使用Conda可以创建环境,这与virtualenv的功能非常相似。我的问题是:
如果我使用Conda,它会取代对virtualenv的需求吗?如果不是,我如何将两者结合使用?我是在Conda中安装virtualenv,还是在virtualenv中安装Conda ? 我还需要使用pip吗?如果是这样,我还能在隔离的环境中安装带有pip的包吗?
当前回答
1.不,如果你使用conda,你不需要使用任何其他工具来管理虚拟环境(如venv, virtualenv, pipenv等)。 也许有一些边缘情况conda没有覆盖,但virtualenv(更重量级)覆盖了,但到目前为止我还没有遇到过。
2.是的,您不仅仍然可以使用pip,而且可能不得不使用。conda包存储库包含的内容比pip的要少,所以conda install有时无法找到您正在寻找的包,如果它不是数据科学包,情况就更严重了。 而且,如果我没记错的话,conda的存储库更新速度和频率不如pip,所以如果您想使用软件包的最新版本,pip可能再次成为您的唯一选择。
注意:如果pip命令在conda虚拟环境中不可用,你必须先安装它,通过点击:
Conda安装PIP
其他回答
安装Conda将使您能够按照您的意愿创建和删除python环境,从而为您提供与virtualenv相同的功能。
在这两种发行版的情况下,您可以创建一个隔离的文件系统树,在那里您可以按照自己的意愿安装和删除python包(可能是使用pip)。如果您想为不同的用例使用相同库的不同版本,或者您只是想尝试一些发行版,然后在节省磁盘空间后删除它,那么这可能会派上用场。
差异:
许可协议。虽然virtualenv使用的是最自由的MIT许可证,但Conda使用的是3条款BSD许可证。
Conda为您提供了自己的包控制系统。这个包控制系统通常提供流行的非python软件的预编译版本(对于大多数流行的系统),这可以很容易地让一些机器学习包工作。也就是说,你不需要为你的系统编译优化的C/ c++代码。虽然这对我们大多数人来说是一种解脱,但它可能会影响此类库的性能。
与virtualenv不同,Conda至少在Linux系统上复制了一些系统库。这些库可能会不同步,导致程序的行为不一致。
结论:
Conda很棒,应该是您开始学习机器学习时的默认选择。这将为您节省一些处理gcc和大量包的时间。然而,Conda并不能取代virtualenv。它引入了一些可能并不总是需要的额外复杂性。它有不同的许可。您可能希望避免在分布式环境或HPC硬件上使用conda。
是的,conda比virtualenv更容易安装,并且基本上取代了后者。
Conda取代virtualenv。在我看来,这样更好。它不局限于Python,也可以用于其他语言。根据我的经验,它提供了更流畅的体验,特别是对于科学软件包。我第一次在Mac上正确安装MayaVi是用conda。 你仍然可以使用pip。事实上,conda会在每个新环境中安装pip。它知道pip安装包。
例如:
conda list
列出当前环境中所有已安装的包。 conda安装的包显示如下:
sphinx_rtd_theme 0.1.7 py35_0 defaults
通过PIP安装的有< PIP >标记:
wxpython-common 3.0.0.0 <pip>
简单地说,你只需要康达。
Conda在一个包中有效地结合了pip和virtualenv的功能,因此如果使用Conda,则不需要virtualenv。 conda支持的软件包数量之多,你会感到惊讶。如果还不够,可以在conda下使用pip。
这里是conda, pip和virtualenv对比页面的链接:
https://docs.conda.io/projects/conda/en/latest/commands.html conda-vs-pip-vs-virtualenv-commands。
虚拟环境和pip
我要补充的是,使用Anaconda创建和删除conda环境非常简单。
> conda create --name <envname> python=<version> <optional dependencies>
> conda remove --name <envname> --all
在激活的环境中,通过conda或pip安装包:
(envname)> conda install <package>
(envname)> pip install <package>
这些环境与conda类似pip的包管理紧密相关,因此创建环境并安装Python和非Python包都很简单。
Jupyter
此外,在环境中安装ipykernel会在Jupyter笔记本的Kernels下拉菜单中添加一个新列表,从而将可复制的环境扩展到笔记本。从Anaconda 4.1开始,添加了nbextensions,从而更容易地向笔记本添加扩展。
可靠性
根据我的经验,在安装numpy和pandas等大型库时,conda更快、更可靠。此外,如果希望转移环境的保存状态,可以通过共享或克隆环境来实现。
比较
一个非详尽的,快速查看每个工具的功能:
Feature | virtualenv |
conda |
---|---|---|
Global | n | y |
Local | y | n |
PyPI | y | y |
Channels | n | y |
Lock File | n | n |
Multi-Python | n | y |
描述
virtualenv creates project-specific, local environments usually in a .venv/ folder per project. In contrast, conda's environments are global and saved in one place. PyPI works with both tools through pip, but conda can add additional channels, which can sometimes install faster. Sadly neither has an official lock file, so reproducing environments has not been solid with either tool. However, both have a mechanism to create a file of pinned packages. Python is needed to install and run virtualenv, but conda already ships with Python. virtualenv creates environments using the same Python version it was installed with. conda allows you to create environments with nearly any Python version.
另请参阅
Virtualenvwrapper:全局virtualenv Pyenv:管理python版本 曼巴:“更快”的康达
根据我的经验,conda非常适合数据科学应用程序,可以作为一个很好的通用环境工具。然而,在软件开发中,使用virtualenv在本地的、短暂的、轻量级的环境中放置可能会很方便。