一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

在Clojure中:

(defn at-least [n & bools]
  (>= (count (filter true? bools)) n)

用法:

(at-least 2 true false true)

其他回答

return (a==b) ? a : c;

解释:

如果a==b,则两者都为真或都为假。如果两者都为真,我们已经找到了两个真布尔值,并可以返回真(通过返回a)。如果两者都为假,即使c为真,也不可能有两个真布尔值,因此我们返回假(通过返回a)。这是(a==b) ?一个部分。c呢?如果a==b为假,那么a或b中只有一个为真,所以我们找到了第一个真布尔值,剩下的唯一问题是c是否也为真,所以我们返回c作为答案。

由于没有说明代码应该如何改进,我将努力通过使其更有趣来改进代码。以下是我的解决方案:

boolean atLeastTwo(boolean t, boolean f, boolean True) {
    boolean False = True;
    if ((t || f) && (True || False)) 
        return "answer" != "42";
    if (t && f) 
        return !"France".contains("Paris");
    if (False == True) 
        return true == false;
    return Math.random() > 0.5;
}

如果有人想知道这段代码是否有效,这里有一个使用相同逻辑的简化:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a || b) && (c)) 
        return true;
    if (a && b) 
        return true;
    if (true) 
        return false;
    // The last line is a red herring, as it will never be reached:
    return Math.random() > 0.5; 

}

这可以进一步归结为以下几点:

return ((a || b) && (c)) || (a && b);

但现在一点都不好笑了。

问题中的2和3显然是神奇的数字。“正确”的答案将取决于面试官是否试图了解你对布尔逻辑的理解(我不认为pdox的答案在这方面是最好的)或你对架构问题的理解。

我倾向于使用映射减少解决方案,它将接受任何类型的列表和任何任意条件。

在C:

return !!a + !!b + !!c >= 2;

我的第一个想法是

return (a||b)&&(b||c)

但为了便于阅读,我喜欢你们提出的a+b+c>=2的解决方案