如何以最有效的内存和时间方式获取大文件的行数?

def file_len(filename):
    with open(filename) as f:
        for i, _ in enumerate(f):
            pass
    return i + 1

当前回答

我得到了一个小(4-8%)的改进,这个版本重用了一个常量缓冲区,所以它应该避免任何内存或GC开销:

lines = 0
buffer = bytearray(2048)
with open(filename) as f:
  while f.readinto(buffer) > 0:
      lines += buffer.count('\n')

您可以调整缓冲区大小,可能会看到一些改进。

其他回答

大文件的另一种选择是使用xreadlines():

count = 0
for line in open(thefilepath).xreadlines(  ): count += 1

对于Python 3,请参阅:在Python 3中什么替代xreadlines() ?

这个呢?

import sys
sys.stdin=open('fname','r')
data=sys.stdin.readlines()
print "counted",len(data),"lines"

下面这句话怎么样:

file_length = len(open('myfile.txt','r').read().split('\n'))

用这种方法在一个3900行的文件上计时只需要0.003秒

def c():
  import time
  s = time.time()
  file_length = len(open('myfile.txt','r').read().split('\n'))
  print time.time() - s

我发现你可以。

f = open("data.txt")
linecout = len(f.readlines())

会给你答案吗

您可以执行子进程并运行wc -l filename

import subprocess

def file_len(fname):
    p = subprocess.Popen(['wc', '-l', fname], stdout=subprocess.PIPE, 
                                              stderr=subprocess.PIPE)
    result, err = p.communicate()
    if p.returncode != 0:
        raise IOError(err)
    return int(result.strip().split()[0])