如何从NumPy数组中删除NaN值?

[1, 2, NaN, 4, NaN, 8]   ⟶   [1, 2, 4, 8]

当前回答

如果它有帮助,对于简单的1d数组:

x = np.array([np.nan, 1, 2, 3, 4])

x[~np.isnan(x)]
>>> array([1., 2., 3., 4.])

但如果你希望扩展到矩阵并保留形状:

x = np.array([
    [np.nan, np.nan],
    [np.nan, 0],
    [1, 2],
    [3, 4]
])

x[~np.isnan(x).any(axis=1)]
>>> array([[1., 2.],
           [3., 4.]])

我在处理pandas .shift()功能时遇到了这个问题,我想避免使用.apply(…,轴=1)由于其效率低下,不惜一切代价。

其他回答

简单地填充

 x = numpy.array([
 [0.99929941, 0.84724713, -0.1500044],
 [-0.79709026, numpy.NaN, -0.4406645],
 [-0.3599013, -0.63565744, -0.70251352]])

x[numpy.isnan(x)] = .555

print(x)

# [[ 0.99929941  0.84724713 -0.1500044 ]
#  [-0.79709026  0.555      -0.4406645 ]
#  [-0.3599013  -0.63565744 -0.70251352]]

@jmetz的答案可能是大多数人需要的;然而,它会产生一个一维数组,例如,使其无法用于删除矩阵中的整行或整列。

为此,应该将逻辑数组缩减为一维,然后对目标数组进行索引。例如,下面将删除至少有一个NaN值的行:

x = x[~numpy.isnan(x).any(axis=1)]

点击这里查看更多细节。

做到以上几点:

x = x[~numpy.isnan(x)]

or

x = x[numpy.logical_not(numpy.isnan(x))]

我发现重置到相同的变量(x)并没有删除实际的nan值,必须使用不同的变量。将其设置为不同的变量删除了nan。 如。

y = x[~numpy.isnan(x)]

最简单的方法是:

numpy.nan_to_num(x)

文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nan_to_num.html

试试这个:

import math
print [value for value in x if not math.isnan(value)]

要了解更多,请阅读列表推导式。