如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
当前回答
filter(lambda v: v==v, x)
既适用于列表和numpy数组 因为v !=v仅用于NaN
其他回答
最简单的方法是:
numpy.nan_to_num(x)
文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nan_to_num.html
对我来说,@jmetz的答案不工作,但是使用pandas isnull()做到了。
x = x[~pd.isnull(x)]
正如其他人所示
x[~numpy.isnan(x)]
的工作原理。但是如果numpy dtype不是原生数据类型(例如,如果它是object),它将抛出一个错误。在这种情况下,你可以用熊猫。
x[~pandas.isna(x)] or x[~pandas.isnull(x)]
做到以上几点:
x = x[~numpy.isnan(x)]
or
x = x[numpy.logical_not(numpy.isnan(x))]
我发现重置到相同的变量(x)并没有删除实际的nan值,必须使用不同的变量。将其设置为不同的变量删除了nan。 如。
y = x[~numpy.isnan(x)]
@jmetz的答案可能是大多数人需要的;然而,它会产生一个一维数组,例如,使其无法用于删除矩阵中的整行或整列。
为此,应该将逻辑数组缩减为一维,然后对目标数组进行索引。例如,下面将删除至少有一个NaN值的行:
x = x[~numpy.isnan(x).any(axis=1)]
点击这里查看更多细节。