如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
当前回答
filter(lambda v: v==v, x)
既适用于列表和numpy数组 因为v !=v仅用于NaN
其他回答
正如其他人所示
x[~numpy.isnan(x)]
的工作原理。但是如果numpy dtype不是原生数据类型(例如,如果它是object),它将抛出一个错误。在这种情况下,你可以用熊猫。
x[~pandas.isna(x)] or x[~pandas.isnull(x)]
简单地填充
x = numpy.array([
[0.99929941, 0.84724713, -0.1500044],
[-0.79709026, numpy.NaN, -0.4406645],
[-0.3599013, -0.63565744, -0.70251352]])
x[numpy.isnan(x)] = .555
print(x)
# [[ 0.99929941 0.84724713 -0.1500044 ]
# [-0.79709026 0.555 -0.4406645 ]
# [-0.3599013 -0.63565744 -0.70251352]]
最简单的方法是:
numpy.nan_to_num(x)
文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nan_to_num.html
对我来说,@jmetz的答案不工作,但是使用pandas isnull()做到了。
x = x[~pd.isnull(x)]
如果它有帮助,对于简单的1d数组:
x = np.array([np.nan, 1, 2, 3, 4])
x[~np.isnan(x)]
>>> array([1., 2., 3., 4.])
但如果你希望扩展到矩阵并保留形状:
x = np.array([
[np.nan, np.nan],
[np.nan, 0],
[1, 2],
[3, 4]
])
x[~np.isnan(x).any(axis=1)]
>>> array([[1., 2.],
[3., 4.]])
我在处理pandas .shift()功能时遇到了这个问题,我想避免使用.apply(…,轴=1)由于其效率低下,不惜一切代价。