如何从NumPy数组中删除NaN值?

[1, 2, NaN, 4, NaN, 8]   ⟶   [1, 2, 4, 8]

当前回答

@jmetz的答案可能是大多数人需要的;然而,它会产生一个一维数组,例如,使其无法用于删除矩阵中的整行或整列。

为此,应该将逻辑数组缩减为一维,然后对目标数组进行索引。例如,下面将删除至少有一个NaN值的行:

x = x[~numpy.isnan(x).any(axis=1)]

点击这里查看更多细节。

其他回答

如果你使用numpy

# first get the indices where the values are finite
ii = np.isfinite(x)

# second get the values
x = x[ii]

最简单的方法是:

numpy.nan_to_num(x)

文档:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nan_to_num.html

接受的答案改变了2d数组的形状。 我在这里提供了一个解决方案,使用Pandas dropna()功能。 它适用于1D和2D数组。在2D情况下,可以选择weather删除包含np.nan的行或列。

import pandas as pd
import numpy as np

def dropna(arr, *args, **kwarg):
    assert isinstance(arr, np.ndarray)
    dropped=pd.DataFrame(arr).dropna(*args, **kwarg).values
    if arr.ndim==1:
        dropped=dropped.flatten()
    return dropped

x = np.array([1400, 1500, 1600, np.nan, np.nan, np.nan ,1700])
y = np.array([[1400, 1500, 1600], [np.nan, 0, np.nan] ,[1700,1800,np.nan]] )


print('='*20+' 1D Case: ' +'='*20+'\nInput:\n',x,sep='')
print('\ndropna:\n',dropna(x),sep='')

print('\n\n'+'='*20+' 2D Case: ' +'='*20+'\nInput:\n',y,sep='')
print('\ndropna (rows):\n',dropna(y),sep='')
print('\ndropna (columns):\n',dropna(y,axis=1),sep='')

print('\n\n'+'='*20+' x[np.logical_not(np.isnan(x))] for 2D: ' +'='*20+'\nInput:\n',y,sep='')
print('\ndropna:\n',x[np.logical_not(np.isnan(x))],sep='')

结果:

==================== 1D Case: ====================
Input:
[1400. 1500. 1600.   nan   nan   nan 1700.]

dropna:
[1400. 1500. 1600. 1700.]


==================== 2D Case: ====================
Input:
[[1400. 1500. 1600.]
 [  nan    0.   nan]
 [1700. 1800.   nan]]

dropna (rows):
[[1400. 1500. 1600.]]

dropna (columns):
[[1500.]
 [   0.]
 [1800.]]


==================== x[np.logical_not(np.isnan(x))] for 2D: ====================
Input:
[[1400. 1500. 1600.]
 [  nan    0.   nan]
 [1700. 1800.   nan]]

dropna:
[1400. 1500. 1600. 1700.]

如果它有帮助,对于简单的1d数组:

x = np.array([np.nan, 1, 2, 3, 4])

x[~np.isnan(x)]
>>> array([1., 2., 3., 4.])

但如果你希望扩展到矩阵并保留形状:

x = np.array([
    [np.nan, np.nan],
    [np.nan, 0],
    [1, 2],
    [3, 4]
])

x[~np.isnan(x).any(axis=1)]
>>> array([[1., 2.],
           [3., 4.]])

我在处理pandas .shift()功能时遇到了这个问题,我想避免使用.apply(…,轴=1)由于其效率低下,不惜一切代价。

试试这个:

import math
print [value for value in x if not math.isnan(value)]

要了解更多,请阅读列表推导式。