如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
当前回答
使用实例删除NumPy数组x中的NaN值。
x = x[~numpy.isnan(x)]
解释
内部函数numpy。isnan返回一个布尔/逻辑数组,当x不是数字时,该数组的值为True。因为我们想要相反的结果,所以我们使用非逻辑操作符~来获得一个数组,在x为有效数字的任何地方都是true。
最后,我们使用这个逻辑数组对原始数组x进行索引,以便只检索非nan值。
其他回答
@jmetz的答案可能是大多数人需要的;然而,它会产生一个一维数组,例如,使其无法用于删除矩阵中的整行或整列。
为此,应该将逻辑数组缩减为一维,然后对目标数组进行索引。例如,下面将删除至少有一个NaN值的行:
x = x[~numpy.isnan(x).any(axis=1)]
点击这里查看更多细节。
试试这个:
import math
print [value for value in x if not math.isnan(value)]
要了解更多,请阅读列表推导式。
简单地填充
x = numpy.array([
[0.99929941, 0.84724713, -0.1500044],
[-0.79709026, numpy.NaN, -0.4406645],
[-0.3599013, -0.63565744, -0.70251352]])
x[numpy.isnan(x)] = .555
print(x)
# [[ 0.99929941 0.84724713 -0.1500044 ]
# [-0.79709026 0.555 -0.4406645 ]
# [-0.3599013 -0.63565744 -0.70251352]]
使用实例删除NumPy数组x中的NaN值。
x = x[~numpy.isnan(x)]
解释
内部函数numpy。isnan返回一个布尔/逻辑数组,当x不是数字时,该数组的值为True。因为我们想要相反的结果,所以我们使用非逻辑操作符~来获得一个数组,在x为有效数字的任何地方都是true。
最后,我们使用这个逻辑数组对原始数组x进行索引,以便只检索非nan值。
如果你使用numpy
# first get the indices where the values are finite
ii = np.isfinite(x)
# second get the values
x = x[ii]