如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
如何从NumPy数组中删除NaN值?
[1, 2, NaN, 4, NaN, 8] ⟶ [1, 2, 4, 8]
当前回答
接受的答案改变了2d数组的形状。 我在这里提供了一个解决方案,使用Pandas dropna()功能。 它适用于1D和2D数组。在2D情况下,可以选择weather删除包含np.nan的行或列。
import pandas as pd
import numpy as np
def dropna(arr, *args, **kwarg):
assert isinstance(arr, np.ndarray)
dropped=pd.DataFrame(arr).dropna(*args, **kwarg).values
if arr.ndim==1:
dropped=dropped.flatten()
return dropped
x = np.array([1400, 1500, 1600, np.nan, np.nan, np.nan ,1700])
y = np.array([[1400, 1500, 1600], [np.nan, 0, np.nan] ,[1700,1800,np.nan]] )
print('='*20+' 1D Case: ' +'='*20+'\nInput:\n',x,sep='')
print('\ndropna:\n',dropna(x),sep='')
print('\n\n'+'='*20+' 2D Case: ' +'='*20+'\nInput:\n',y,sep='')
print('\ndropna (rows):\n',dropna(y),sep='')
print('\ndropna (columns):\n',dropna(y,axis=1),sep='')
print('\n\n'+'='*20+' x[np.logical_not(np.isnan(x))] for 2D: ' +'='*20+'\nInput:\n',y,sep='')
print('\ndropna:\n',x[np.logical_not(np.isnan(x))],sep='')
结果:
==================== 1D Case: ====================
Input:
[1400. 1500. 1600. nan nan nan 1700.]
dropna:
[1400. 1500. 1600. 1700.]
==================== 2D Case: ====================
Input:
[[1400. 1500. 1600.]
[ nan 0. nan]
[1700. 1800. nan]]
dropna (rows):
[[1400. 1500. 1600.]]
dropna (columns):
[[1500.]
[ 0.]
[1800.]]
==================== x[np.logical_not(np.isnan(x))] for 2D: ====================
Input:
[[1400. 1500. 1600.]
[ nan 0. nan]
[1700. 1800. nan]]
dropna:
[1400. 1500. 1600. 1700.]
其他回答
做到以上几点:
x = x[~numpy.isnan(x)]
or
x = x[numpy.logical_not(numpy.isnan(x))]
我发现重置到相同的变量(x)并没有删除实际的nan值,必须使用不同的变量。将其设置为不同的变量删除了nan。 如。
y = x[~numpy.isnan(x)]
接受的答案改变了2d数组的形状。 我在这里提供了一个解决方案,使用Pandas dropna()功能。 它适用于1D和2D数组。在2D情况下,可以选择weather删除包含np.nan的行或列。
import pandas as pd
import numpy as np
def dropna(arr, *args, **kwarg):
assert isinstance(arr, np.ndarray)
dropped=pd.DataFrame(arr).dropna(*args, **kwarg).values
if arr.ndim==1:
dropped=dropped.flatten()
return dropped
x = np.array([1400, 1500, 1600, np.nan, np.nan, np.nan ,1700])
y = np.array([[1400, 1500, 1600], [np.nan, 0, np.nan] ,[1700,1800,np.nan]] )
print('='*20+' 1D Case: ' +'='*20+'\nInput:\n',x,sep='')
print('\ndropna:\n',dropna(x),sep='')
print('\n\n'+'='*20+' 2D Case: ' +'='*20+'\nInput:\n',y,sep='')
print('\ndropna (rows):\n',dropna(y),sep='')
print('\ndropna (columns):\n',dropna(y,axis=1),sep='')
print('\n\n'+'='*20+' x[np.logical_not(np.isnan(x))] for 2D: ' +'='*20+'\nInput:\n',y,sep='')
print('\ndropna:\n',x[np.logical_not(np.isnan(x))],sep='')
结果:
==================== 1D Case: ====================
Input:
[1400. 1500. 1600. nan nan nan 1700.]
dropna:
[1400. 1500. 1600. 1700.]
==================== 2D Case: ====================
Input:
[[1400. 1500. 1600.]
[ nan 0. nan]
[1700. 1800. nan]]
dropna (rows):
[[1400. 1500. 1600.]]
dropna (columns):
[[1500.]
[ 0.]
[1800.]]
==================== x[np.logical_not(np.isnan(x))] for 2D: ====================
Input:
[[1400. 1500. 1600.]
[ nan 0. nan]
[1700. 1800. nan]]
dropna:
[1400. 1500. 1600. 1700.]
如果你使用numpy
# first get the indices where the values are finite
ii = np.isfinite(x)
# second get the values
x = x[ii]
使用实例删除NumPy数组x中的NaN值。
x = x[~numpy.isnan(x)]
解释
内部函数numpy。isnan返回一个布尔/逻辑数组,当x不是数字时,该数组的值为True。因为我们想要相反的结果,所以我们使用非逻辑操作符~来获得一个数组,在x为有效数字的任何地方都是true。
最后,我们使用这个逻辑数组对原始数组x进行索引,以便只检索非nan值。
对我来说,@jmetz的答案不工作,但是使用pandas isnull()做到了。
x = x[~pd.isnull(x)]