假设你有一个扁平的表,存储一个有序的树层次结构:

Id   Name         ParentId   Order
 1   'Node 1'            0      10
 2   'Node 1.1'          1      10
 3   'Node 2'            0      20
 4   'Node 1.1.1'        2      10
 5   'Node 2.1'          3      10
 6   'Node 1.2'          1      20

这是一个图表,我们有[id] Name。根节点0是虚构的。

                       [0] ROOT
                          /    \ 
              [1] Node 1          [3] Node 2
              /       \                   \
    [2] Node 1.1     [6] Node 1.2      [5] Node 2.1
          /          
 [4] Node 1.1.1

您将使用什么极简的方法将其输出到HTML(或文本,就此而言),作为一个正确有序、正确缩进的树?

进一步假设您只有基本的数据结构(数组和hashmap),没有带有父/子引用的花哨对象,没有ORM,没有框架,只有您的两只手。该表表示为一个结果集,可以随机访问。

伪代码或简单的英语是可以的,这纯粹是一个概念问题。

附加问题:在RDBMS中是否存在从根本上更好的方法来存储这样的树结构?


编辑和添加

回答一位评论者(Mark Bessey)的问题:根节点是不必要的,因为无论如何它都不会显示。ParentId = 0是表示“这些是顶级”的惯例。Order列定义了具有相同父节点的节点如何排序。

我所说的“结果集”可以被描绘成一个hashmap数组(继续使用这个术语)。因为我的例子本来就应该在那里。有些答案是额外的,首先构建它,但这没关系。

树可以任意深。每个节点可以有N个子节点。不过,我脑子里并没有“数百万条”树。

不要把我选择的节点命名(“节点1.1.1”)误认为是可以依赖的。节点也可以被称为“Frank”或“Bob”,没有隐含的命名结构,这只是为了让它更具可读性。

我已经发布了我自己的解决方案,所以你们可以把它拆成碎片。


当前回答

您可以使用hashmap模拟任何其他数据结构,因此这并不是一个可怕的限制。从上到下扫描,为数据库的每一行创建hashmap,为每一列创建一个条目。将这些hashmap添加到“master”hashmap中,并以id为键。如果任何节点都有一个尚未见过的“父”节点,请在主hashmap中为它创建一个占位符条目,并在看到实际节点时填充它。

要将其打印出来,只需对数据进行简单的深度优先遍历,并在此过程中跟踪缩进级别。您可以通过为每一行保留一个“子”条目,并在扫描数据时填充它来简化这一点。

至于是否有“更好”的方法在数据库中存储树,这取决于您将如何使用数据。我曾经见过一些系统,它们具有已知的最大深度,但却为层次结构中的每个级别使用不同的表。如果树中的级别并不完全相同(顶级类别与叶类别不同),那么这就很有意义了。

其他回答

从Oracle 9i开始,您可以使用CONNECT BY。

SELECT LPAD(' ', (LEVEL - 1) * 4) || "Name" AS "Name"
FROM (SELECT * FROM TMP_NODE ORDER BY "Order")
CONNECT BY PRIOR "Id" = "ParentId"
START WITH "Id" IN (SELECT "Id" FROM TMP_NODE WHERE "ParentId" = 0)

从SQL Server 2005开始,您可以使用递归公共表表达式(CTE)。

WITH [NodeList] (
  [Id]
  , [ParentId]
  , [Level]
  , [Order]
) AS (
  SELECT [Node].[Id]
    , [Node].[ParentId]
    , 0 AS [Level]
    , CONVERT([varchar](MAX), [Node].[Order]) AS [Order]
  FROM [Node]
  WHERE [Node].[ParentId] = 0
  UNION ALL
  SELECT [Node].[Id]
    , [Node].[ParentId]
    , [NodeList].[Level] + 1 AS [Level]
    , [NodeList].[Order] + '|'
      + CONVERT([varchar](MAX), [Node].[Order]) AS [Order]
  FROM [Node]
    INNER JOIN [NodeList] ON [NodeList].[Id] = [Node].[ParentId]
) SELECT REPLICATE(' ', [NodeList].[Level] * 4) + [Node].[Name] AS [Name]
FROM [Node]
  INNER JOIN [NodeList] ON [NodeList].[Id] = [Node].[Id]
ORDER BY [NodeList].[Order]

两者都将输出以下结果。

Name
'Node 1'
'    Node 1.1'
'        Node 1.1.1'
'    Node 1.2'
'Node 2'
'    Node 2.1'

如果可以创建嵌套的哈希映射或数组,那么我只需从表的开头往下走,并将每个项添加到嵌套数组中。我必须跟踪每一行到根节点,以便知道要插入到嵌套数组中的哪一层。我可以使用记忆,这样我就不需要一遍又一遍地查找相同的父节点。

编辑:我会先将整个表读入一个数组,这样它就不会重复查询DB。当然,如果您的表非常大,这是不实际的。

在构建结构之后,我必须先对其进行深度遍历,并打印出HTML。

没有更好的基本方法来存储这些信息使用一个表(我可能是错的;),并希望看到一个更好的解决方案)。然而,如果您创建了一个使用动态创建的db表的方案,那么您以牺牲简单性和SQL地狱的风险为代价打开了一个全新的世界;)。

考虑使用像neo4j这样的nosql工具来处理层次结构。 例如,像linkedin这样的网络应用程序使用couchbase(另一个nosql解决方案)

但是nosql只能用于数据集市级别的查询,而不能用于存储/维护事务

如果元素是按树顺序排列的,如你的例子所示,你可以使用以下Python示例:

delimiter = '.'
stack = []
for item in items:
  while stack and not item.startswith(stack[-1]+delimiter):
    print "</div>"
    stack.pop()
  print "<div>"
  print item
  stack.append(item)

这样做的目的是维护一个表示树中当前位置的堆栈。对于表中的每个元素,它弹出堆栈元素(关闭匹配的div),直到找到当前项的父元素。然后它输出该节点的开始并将其推入堆栈。

如果希望使用缩进而不是嵌套元素输出树,可以简单地跳过print语句来打印div,并在每个项之前打印等于堆栈大小的若干倍的空格。例如,在Python中:

print "  " * len(stack)

您还可以轻松地使用此方法构造一组嵌套的列表或字典。

编辑:我从你的澄清中看到,这些名称并不是节点路径。这就提出了另一种方法:

idx = {}
idx[0] = []
for node in results:
  child_list = []
  idx[node.Id] = child_list
  idx[node.ParentId].append((node, child_list))

这将构造一个元组数组树(!)。Idx[0]表示树的根。数组中的每个元素都是一个二元组,由节点本身及其所有子元素的列表组成。构造后,可以保留idx[0]并丢弃idx,除非您希望通过节点的ID访问节点。

如果您使用嵌套集(有时称为Modified preorder Tree Traversal),您可以通过一个查询以树顺序提取整个树结构或其中的任何子树,但插入的代价更大,因为您需要管理通过树结构描述有序路径的列。

对于django-mptt,我使用了这样的结构:

id  parent_id  tree_id  level  lft  rght
--  ---------  -------  -----  ---  ----
 1       null        1      0    1    14
 2          1        1      1    2     7
 3          2        1      2    3     4
 4          2        1      2    5     6
 5          1        1      1    8    13
 6          5        1      2    9    10
 7          5        1      2    11   12

它描述了一个像这样的树(id代表每一项):

 1
 +-- 2
 |   +-- 3
 |   +-- 4
 |
 +-- 5
     +-- 6
     +-- 7

或者,作为一个嵌套的集合图,这使得left和right值的工作方式更加明显:

 __________________________________________________________________________
|  Root 1                                                                  |
|   ________________________________    ________________________________   |
|  |  Child 1.1                     |  |  Child 1.2                     |  |
|  |   ___________    ___________   |  |   ___________    ___________   |  |
|  |  |  C 1.1.1  |  |  C 1.1.2  |  |  |  |  C 1.2.1  |  |  C 1.2.2  |  |  |
1  2  3___________4  5___________6  7  8  9___________10 11__________12 13 14
|  |________________________________|  |________________________________|  |
|__________________________________________________________________________|

如您所见,要获得给定节点的整个子树,按照树的顺序,您只需选择在其left和right值之间具有left和right值的所有行。检索给定节点的祖先树也很简单。

The level column is a bit of denormalisation for convenience more than anything and the tree_id column allows you to restart the lft and rght numbering for each top-level node, which reduces the number of columns affected by inserts, moves and deletions, as the lft and rght columns have to be adjusted accordingly when these operations take place in order to create or close gaps. I made some development notes at the time when I was trying to wrap my head around the queries required for each operation.

为了实际使用这些数据来显示树,我创建了一个tree_item_iterator实用函数,对于每个节点,它应该为您提供足够的信息来生成您想要的任何类型的显示。

更多关于MPTT的信息:

SQL中的树 在数据库中存储分层数据 在MySQL中管理分层数据