假设你有一个扁平的表,存储一个有序的树层次结构:

Id   Name         ParentId   Order
 1   'Node 1'            0      10
 2   'Node 1.1'          1      10
 3   'Node 2'            0      20
 4   'Node 1.1.1'        2      10
 5   'Node 2.1'          3      10
 6   'Node 1.2'          1      20

这是一个图表,我们有[id] Name。根节点0是虚构的。

                       [0] ROOT
                          /    \ 
              [1] Node 1          [3] Node 2
              /       \                   \
    [2] Node 1.1     [6] Node 1.2      [5] Node 2.1
          /          
 [4] Node 1.1.1

您将使用什么极简的方法将其输出到HTML(或文本,就此而言),作为一个正确有序、正确缩进的树?

进一步假设您只有基本的数据结构(数组和hashmap),没有带有父/子引用的花哨对象,没有ORM,没有框架,只有您的两只手。该表表示为一个结果集,可以随机访问。

伪代码或简单的英语是可以的,这纯粹是一个概念问题。

附加问题:在RDBMS中是否存在从根本上更好的方法来存储这样的树结构?


编辑和添加

回答一位评论者(Mark Bessey)的问题:根节点是不必要的,因为无论如何它都不会显示。ParentId = 0是表示“这些是顶级”的惯例。Order列定义了具有相同父节点的节点如何排序。

我所说的“结果集”可以被描绘成一个hashmap数组(继续使用这个术语)。因为我的例子本来就应该在那里。有些答案是额外的,首先构建它,但这没关系。

树可以任意深。每个节点可以有N个子节点。不过,我脑子里并没有“数百万条”树。

不要把我选择的节点命名(“节点1.1.1”)误认为是可以依赖的。节点也可以被称为“Frank”或“Bob”,没有隐含的命名结构,这只是为了让它更具可读性。

我已经发布了我自己的解决方案,所以你们可以把它拆成碎片。


当前回答

您可以使用hashmap模拟任何其他数据结构,因此这并不是一个可怕的限制。从上到下扫描,为数据库的每一行创建hashmap,为每一列创建一个条目。将这些hashmap添加到“master”hashmap中,并以id为键。如果任何节点都有一个尚未见过的“父”节点,请在主hashmap中为它创建一个占位符条目,并在看到实际节点时填充它。

要将其打印出来,只需对数据进行简单的深度优先遍历,并在此过程中跟踪缩进级别。您可以通过为每一行保留一个“子”条目,并在扫描数据时填充它来简化这一点。

至于是否有“更好”的方法在数据库中存储树,这取决于您将如何使用数据。我曾经见过一些系统,它们具有已知的最大深度,但却为层次结构中的每个级别使用不同的表。如果树中的级别并不完全相同(顶级类别与叶类别不同),那么这就很有意义了。

其他回答

如果有选择的话,我会用对象。我将为每条记录创建一个对象,其中每个对象都有一个子集合,并将它们全部存储在一个assoc数组(/hashtable)中,其中Id是键。并在集合中闪动一次,将子元素添加到相关的子字段中。简单。

但是因为你限制一些好的OOP的使用是没有乐趣的,我可能会基于:

function PrintLine(int pID, int level)
    foreach record where ParentID == pID
        print level*tabs + record-data
        PrintLine(record.ID, level + 1)

PrintLine(0, 0)

编辑:这与其他几个条目类似,但我认为它稍微干净一些。我要补充一点:这是非常sql密集的。这是令人讨厌的。如果可以选择的话,选择面向对象的方法。

这是一个相当老的问题,但由于有很多观点,我认为有必要提出一个替代方案,在我看来,非常优雅的解决方案。

为了读取树结构,可以使用递归通用表表达式(CTEs)。它提供了一次获取整个树结构的可能性,有关于节点的级别,它的父节点和父节点的子节点顺序的信息。

让我向你展示这在PostgreSQL 9.1中是如何工作的。

Create a structure CREATE TABLE tree ( id int NOT NULL, name varchar(32) NOT NULL, parent_id int NULL, node_order int NOT NULL, CONSTRAINT tree_pk PRIMARY KEY (id), CONSTRAINT tree_tree_fk FOREIGN KEY (parent_id) REFERENCES tree (id) NOT DEFERRABLE ); insert into tree values (0, 'ROOT', NULL, 0), (1, 'Node 1', 0, 10), (2, 'Node 1.1', 1, 10), (3, 'Node 2', 0, 20), (4, 'Node 1.1.1', 2, 10), (5, 'Node 2.1', 3, 10), (6, 'Node 1.2', 1, 20); Write a query WITH RECURSIVE tree_search (id, name, level, parent_id, node_order) AS ( SELECT id, name, 0, parent_id, 1 FROM tree WHERE parent_id is NULL UNION ALL SELECT t.id, t.name, ts.level + 1, ts.id, t.node_order FROM tree t, tree_search ts WHERE t.parent_id = ts.id ) SELECT * FROM tree_search WHERE level > 0 ORDER BY level, parent_id, node_order;

以下是调查结果:

     id |    name    | level | parent_id | node_order 
    ----+------------+-------+-----------+------------
      1 | Node 1     |     1 |         0 |         10
      3 | Node 2     |     1 |         0 |         20
      2 | Node 1.1   |     2 |         1 |         10
      6 | Node 1.2   |     2 |         1 |         20
      5 | Node 2.1   |     2 |         3 |         10
      4 | Node 1.1.1 |     3 |         2 |         10
    (6 rows)

树节点按深度排序。在最终输出中,我们将在随后的行中显示它们。

对于每一层,它们都是根据父级中的parent_id和node_order进行排序的。这告诉我们如何在输出链接节点中将它们按此顺序呈现给父节点。

有了这样的结构,用HTML制作一个真正漂亮的演示就不难了。

递归cte可用于PostgreSQL, IBM DB2, MS SQL Server, Oracle和SQLite。

如果你想阅读更多关于递归SQL查询的内容,你可以查看你最喜欢的DBMS的文档,或者阅读我关于这个主题的两篇文章:

做它在SQL:递归树遍历 了解SQL递归查询的强大功能

有一些很好的解决方案利用了sql索引的内部btree表示。这是基于1998年左右的一些伟大的研究。

下面是一个示例表(在mysql中)。

CREATE TABLE `node` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(255) NOT NULL,
  `tw` int(10) unsigned NOT NULL,
  `pa` int(10) unsigned DEFAULT NULL,
  `sz` int(10) unsigned DEFAULT NULL,
  `nc` int(11) GENERATED ALWAYS AS (tw+sz) STORED,
  PRIMARY KEY (`id`),
  KEY `node_tw_index` (`tw`),
  KEY `node_pa_index` (`pa`),
  KEY `node_nc_index` (`nc`),
  CONSTRAINT `node_pa_fk` FOREIGN KEY (`pa`) REFERENCES `node` (`tw`) ON DELETE CASCADE
)

树表示中唯一需要的字段是:

tw:从左到右的DFS预购索引,其中根= 1。 pa:对父节点的引用(使用tw),根节点为空。 sz:包括节点本身在内的节点分支的大小。 Nc:用作语法糖。它是tw+sz,表示节点的“下一个子”的tw。

下面是一个例子,24个节点填充,按tw排序:

+-----+---------+----+------+------+------+
| id  | name    | tw | pa   | sz   | nc   |
+-----+---------+----+------+------+------+
|   1 | Root    |  1 | NULL |   24 |   25 |
|   2 | A       |  2 |    1 |   14 |   16 |
|   3 | AA      |  3 |    2 |    1 |    4 |
|   4 | AB      |  4 |    2 |    7 |   11 |
|   5 | ABA     |  5 |    4 |    1 |    6 |
|   6 | ABB     |  6 |    4 |    3 |    9 |
|   7 | ABBA    |  7 |    6 |    1 |    8 |
|   8 | ABBB    |  8 |    6 |    1 |    9 |
|   9 | ABC     |  9 |    4 |    2 |   11 |
|  10 | ABCD    | 10 |    9 |    1 |   11 |
|  11 | AC      | 11 |    2 |    4 |   15 |
|  12 | ACA     | 12 |   11 |    2 |   14 |
|  13 | ACAA    | 13 |   12 |    1 |   14 |
|  14 | ACB     | 14 |   11 |    1 |   15 |
|  15 | AD      | 15 |    2 |    1 |   16 |
|  16 | B       | 16 |    1 |    1 |   17 |
|  17 | C       | 17 |    1 |    6 |   23 |
| 359 | C0      | 18 |   17 |    5 |   23 |
| 360 | C1      | 19 |   18 |    4 |   23 |
| 361 | C2(res) | 20 |   19 |    3 |   23 |
| 362 | C3      | 21 |   20 |    2 |   23 |
| 363 | C4      | 22 |   21 |    1 |   23 |
|  18 | D       | 23 |    1 |    1 |   24 |
|  19 | E       | 24 |    1 |    1 |   25 |
+-----+---------+----+------+------+------+

每个树的结果都是非递归的。 例如,要获取tw='22'节点的父节点列表

的祖先

select anc.* from node me,node anc 
where me.tw=22 and anc.nc >= me.tw and anc.tw <= me.tw 
order by anc.tw;
+-----+---------+----+------+------+------+
| id  | name    | tw | pa   | sz   | nc   |
+-----+---------+----+------+------+------+
|   1 | Root    |  1 | NULL |   24 |   25 |
|  17 | C       | 17 |    1 |    6 |   23 |
| 359 | C0      | 18 |   17 |    5 |   23 |
| 360 | C1      | 19 |   18 |    4 |   23 |
| 361 | C2(res) | 20 |   19 |    3 |   23 |
| 362 | C3      | 21 |   20 |    2 |   23 |
| 363 | C4      | 22 |   21 |    1 |   23 |
+-----+---------+----+------+------+------+

兄弟姐妹和孩子是微不足道的-只需使用pa字段按tw排序。

的后代

例如,根在tw = 17的节点的集合(分支)。

select des.* from node me,node des 
where me.tw=17 and des.tw < me.nc and des.tw >= me.tw 
order by des.tw;
+-----+---------+----+------+------+------+
| id  | name    | tw | pa   | sz   | nc   |
+-----+---------+----+------+------+------+
|  17 | C       | 17 |    1 |    6 |   23 |
| 359 | C0      | 18 |   17 |    5 |   23 |
| 360 | C1      | 19 |   18 |    4 |   23 |
| 361 | C2(res) | 20 |   19 |    3 |   23 |
| 362 | C3      | 21 |   20 |    2 |   23 |
| 363 | C4      | 22 |   21 |    1 |   23 |
+-----+---------+----+------+------+------+

额外的笔记

当读取的数量远远大于插入或更新的数量时,这种方法非常有用。

因为树中节点的插入、移动或更新需要调整树,所以在开始操作之前必须锁定表。

插入/删除成本很高,因为tw索引和sz(分支大小)值需要在插入点之后的所有节点上更新,并且需要分别对所有祖先节点更新。

分支移动涉及到将分支的tw值移出范围,因此在移动分支时禁用外键约束也是必要的。移动一个分支需要四个查询:

把树枝移出范围。 填补它留下的缺口。(剩下的树现在是正常化的)。 打开它要去的地方的缺口。 移动树枝到它的新位置。

调整树查询

树中间隙的打开/关闭是创建/更新/删除方法使用的一个重要子函数,因此我将它包含在这里。

我们需要两个参数——一个标志表示是缩小还是扩大,另一个是节点的tw索引。因此,例如tw=18(分支大小为5)。让我们假设我们正在缩小(删除tw) -这意味着我们在下面的例子的更新中使用'-'而不是'+'。

我们首先使用一个(稍微改变的)祖先函数来更新sz值。

update node me, node anc set anc.sz = anc.sz - me.sz from 
node me, node anc where me.tw=18 
and ((anc.nc >= me.tw and anc.tw < me.pa) or (anc.tw=me.pa));

然后我们需要为那些tw高于要移除的分支调整tw。

update node me, node anc set anc.tw = anc.tw - me.sz from 
node me, node anc where me.tw=18 and anc.tw >= me.tw;

然后我们需要调整那些pa的tw比要移除的分支高的父类。

update node me, node anc set anc.pa = anc.pa - me.sz from 
node me, node anc where me.tw=18 and anc.pa >= me.tw;

要扩展Bill的SQL解决方案,基本上可以使用平面数组来实现相同的功能。此外,如果你的字符串都有相同的长度,你的最大子代数是已知的(比如在一个二叉树中),你可以使用一个单一的字符串(字符数组)。如果你有任意数量的孩子,事情就会变得复杂一些……我必须检查我的旧笔记,看看能做些什么。

然后,牺牲一点内存,特别是如果你的树是稀疏的和/或不平衡的,你可以,通过一些索引数学,通过存储你的树随机访问所有的字符串,宽度优先在数组中,就像这样(对于二叉树):

String[] nodeArray = [L0root, L1child1, L1child2, L2Child1, L2Child2, L2Child3, L2Child4] ...

你知道弦的长度,你知道 我现在在工作,所以不能花太多时间在上面,但有兴趣,我可以获取一些代码来做到这一点。 我们过去用它来搜索由DNA密码子组成的二叉树,一个构建树的过程,然后我们将其平铺以搜索文本模式,当找到时,尽管索引数学(从上面反向),我们将节点找回…非常快速和有效,我们的树很少有空节点,但我们可以在一瞬间搜索千兆字节的数据。

比尔的回答非常好,这个答案增加了一些东西,这让我希望SO支持线程的答案。

无论如何,我想要支持树结构和Order属性。我在每个Node中都包含了一个名为leftSibling的属性,它所做的事情与Order在原始问题中所做的事情相同(保持从左到右的顺序)。

mysql> desc nodes ;
+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int(11)      | NO   | PRI | NULL    | auto_increment |
| name        | varchar(255) | YES  |     | NULL    |                |
| leftSibling | int(11)      | NO   |     | 0       |                |
+-------------+--------------+------+-----+---------+----------------+
3 rows in set (0.00 sec)

mysql> desc adjacencies;
+------------+---------+------+-----+---------+----------------+
| Field      | Type    | Null | Key | Default | Extra          |
+------------+---------+------+-----+---------+----------------+
| relationId | int(11) | NO   | PRI | NULL    | auto_increment |
| parent     | int(11) | NO   |     | NULL    |                |
| child      | int(11) | NO   |     | NULL    |                |
| pathLen    | int(11) | NO   |     | NULL    |                |
+------------+---------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

更多细节和SQL代码在我的博客。

谢谢你,比尔,你的回答对我的开始很有帮助!