假设你有一个扁平的表,存储一个有序的树层次结构:

Id   Name         ParentId   Order
 1   'Node 1'            0      10
 2   'Node 1.1'          1      10
 3   'Node 2'            0      20
 4   'Node 1.1.1'        2      10
 5   'Node 2.1'          3      10
 6   'Node 1.2'          1      20

这是一个图表,我们有[id] Name。根节点0是虚构的。

                       [0] ROOT
                          /    \ 
              [1] Node 1          [3] Node 2
              /       \                   \
    [2] Node 1.1     [6] Node 1.2      [5] Node 2.1
          /          
 [4] Node 1.1.1

您将使用什么极简的方法将其输出到HTML(或文本,就此而言),作为一个正确有序、正确缩进的树?

进一步假设您只有基本的数据结构(数组和hashmap),没有带有父/子引用的花哨对象,没有ORM,没有框架,只有您的两只手。该表表示为一个结果集,可以随机访问。

伪代码或简单的英语是可以的,这纯粹是一个概念问题。

附加问题:在RDBMS中是否存在从根本上更好的方法来存储这样的树结构?


编辑和添加

回答一位评论者(Mark Bessey)的问题:根节点是不必要的,因为无论如何它都不会显示。ParentId = 0是表示“这些是顶级”的惯例。Order列定义了具有相同父节点的节点如何排序。

我所说的“结果集”可以被描绘成一个hashmap数组(继续使用这个术语)。因为我的例子本来就应该在那里。有些答案是额外的,首先构建它,但这没关系。

树可以任意深。每个节点可以有N个子节点。不过,我脑子里并没有“数百万条”树。

不要把我选择的节点命名(“节点1.1.1”)误认为是可以依赖的。节点也可以被称为“Frank”或“Bob”,没有隐含的命名结构,这只是为了让它更具可读性。

我已经发布了我自己的解决方案,所以你们可以把它拆成碎片。


当前回答

考虑使用像neo4j这样的nosql工具来处理层次结构。 例如,像linkedin这样的网络应用程序使用couchbase(另一个nosql解决方案)

但是nosql只能用于数据集市级别的查询,而不能用于存储/维护事务

其他回答

有一些很好的解决方案利用了sql索引的内部btree表示。这是基于1998年左右的一些伟大的研究。

下面是一个示例表(在mysql中)。

CREATE TABLE `node` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `name` varchar(255) NOT NULL,
  `tw` int(10) unsigned NOT NULL,
  `pa` int(10) unsigned DEFAULT NULL,
  `sz` int(10) unsigned DEFAULT NULL,
  `nc` int(11) GENERATED ALWAYS AS (tw+sz) STORED,
  PRIMARY KEY (`id`),
  KEY `node_tw_index` (`tw`),
  KEY `node_pa_index` (`pa`),
  KEY `node_nc_index` (`nc`),
  CONSTRAINT `node_pa_fk` FOREIGN KEY (`pa`) REFERENCES `node` (`tw`) ON DELETE CASCADE
)

树表示中唯一需要的字段是:

tw:从左到右的DFS预购索引,其中根= 1。 pa:对父节点的引用(使用tw),根节点为空。 sz:包括节点本身在内的节点分支的大小。 Nc:用作语法糖。它是tw+sz,表示节点的“下一个子”的tw。

下面是一个例子,24个节点填充,按tw排序:

+-----+---------+----+------+------+------+
| id  | name    | tw | pa   | sz   | nc   |
+-----+---------+----+------+------+------+
|   1 | Root    |  1 | NULL |   24 |   25 |
|   2 | A       |  2 |    1 |   14 |   16 |
|   3 | AA      |  3 |    2 |    1 |    4 |
|   4 | AB      |  4 |    2 |    7 |   11 |
|   5 | ABA     |  5 |    4 |    1 |    6 |
|   6 | ABB     |  6 |    4 |    3 |    9 |
|   7 | ABBA    |  7 |    6 |    1 |    8 |
|   8 | ABBB    |  8 |    6 |    1 |    9 |
|   9 | ABC     |  9 |    4 |    2 |   11 |
|  10 | ABCD    | 10 |    9 |    1 |   11 |
|  11 | AC      | 11 |    2 |    4 |   15 |
|  12 | ACA     | 12 |   11 |    2 |   14 |
|  13 | ACAA    | 13 |   12 |    1 |   14 |
|  14 | ACB     | 14 |   11 |    1 |   15 |
|  15 | AD      | 15 |    2 |    1 |   16 |
|  16 | B       | 16 |    1 |    1 |   17 |
|  17 | C       | 17 |    1 |    6 |   23 |
| 359 | C0      | 18 |   17 |    5 |   23 |
| 360 | C1      | 19 |   18 |    4 |   23 |
| 361 | C2(res) | 20 |   19 |    3 |   23 |
| 362 | C3      | 21 |   20 |    2 |   23 |
| 363 | C4      | 22 |   21 |    1 |   23 |
|  18 | D       | 23 |    1 |    1 |   24 |
|  19 | E       | 24 |    1 |    1 |   25 |
+-----+---------+----+------+------+------+

每个树的结果都是非递归的。 例如,要获取tw='22'节点的父节点列表

的祖先

select anc.* from node me,node anc 
where me.tw=22 and anc.nc >= me.tw and anc.tw <= me.tw 
order by anc.tw;
+-----+---------+----+------+------+------+
| id  | name    | tw | pa   | sz   | nc   |
+-----+---------+----+------+------+------+
|   1 | Root    |  1 | NULL |   24 |   25 |
|  17 | C       | 17 |    1 |    6 |   23 |
| 359 | C0      | 18 |   17 |    5 |   23 |
| 360 | C1      | 19 |   18 |    4 |   23 |
| 361 | C2(res) | 20 |   19 |    3 |   23 |
| 362 | C3      | 21 |   20 |    2 |   23 |
| 363 | C4      | 22 |   21 |    1 |   23 |
+-----+---------+----+------+------+------+

兄弟姐妹和孩子是微不足道的-只需使用pa字段按tw排序。

的后代

例如,根在tw = 17的节点的集合(分支)。

select des.* from node me,node des 
where me.tw=17 and des.tw < me.nc and des.tw >= me.tw 
order by des.tw;
+-----+---------+----+------+------+------+
| id  | name    | tw | pa   | sz   | nc   |
+-----+---------+----+------+------+------+
|  17 | C       | 17 |    1 |    6 |   23 |
| 359 | C0      | 18 |   17 |    5 |   23 |
| 360 | C1      | 19 |   18 |    4 |   23 |
| 361 | C2(res) | 20 |   19 |    3 |   23 |
| 362 | C3      | 21 |   20 |    2 |   23 |
| 363 | C4      | 22 |   21 |    1 |   23 |
+-----+---------+----+------+------+------+

额外的笔记

当读取的数量远远大于插入或更新的数量时,这种方法非常有用。

因为树中节点的插入、移动或更新需要调整树,所以在开始操作之前必须锁定表。

插入/删除成本很高,因为tw索引和sz(分支大小)值需要在插入点之后的所有节点上更新,并且需要分别对所有祖先节点更新。

分支移动涉及到将分支的tw值移出范围,因此在移动分支时禁用外键约束也是必要的。移动一个分支需要四个查询:

把树枝移出范围。 填补它留下的缺口。(剩下的树现在是正常化的)。 打开它要去的地方的缺口。 移动树枝到它的新位置。

调整树查询

树中间隙的打开/关闭是创建/更新/删除方法使用的一个重要子函数,因此我将它包含在这里。

我们需要两个参数——一个标志表示是缩小还是扩大,另一个是节点的tw索引。因此,例如tw=18(分支大小为5)。让我们假设我们正在缩小(删除tw) -这意味着我们在下面的例子的更新中使用'-'而不是'+'。

我们首先使用一个(稍微改变的)祖先函数来更新sz值。

update node me, node anc set anc.sz = anc.sz - me.sz from 
node me, node anc where me.tw=18 
and ((anc.nc >= me.tw and anc.tw < me.pa) or (anc.tw=me.pa));

然后我们需要为那些tw高于要移除的分支调整tw。

update node me, node anc set anc.tw = anc.tw - me.sz from 
node me, node anc where me.tw=18 and anc.tw >= me.tw;

然后我们需要调整那些pa的tw比要移除的分支高的父类。

update node me, node anc set anc.pa = anc.pa - me.sz from 
node me, node anc where me.tw=18 and anc.pa >= me.tw;

假设你知道根元素是0,下面是输出到文本的伪代码:

function PrintLevel (int curr, int level)
    //print the indents
    for (i=1; i<=level; i++)
        print a tab
    print curr \n;
    for each child in the table with a parent of curr
        PrintLevel (child, level+1)


for each elementID where the parentid is zero
    PrintLevel(elementID, 0)

如果元素是按树顺序排列的,如你的例子所示,你可以使用以下Python示例:

delimiter = '.'
stack = []
for item in items:
  while stack and not item.startswith(stack[-1]+delimiter):
    print "</div>"
    stack.pop()
  print "<div>"
  print item
  stack.append(item)

这样做的目的是维护一个表示树中当前位置的堆栈。对于表中的每个元素,它弹出堆栈元素(关闭匹配的div),直到找到当前项的父元素。然后它输出该节点的开始并将其推入堆栈。

如果希望使用缩进而不是嵌套元素输出树,可以简单地跳过print语句来打印div,并在每个项之前打印等于堆栈大小的若干倍的空格。例如,在Python中:

print "  " * len(stack)

您还可以轻松地使用此方法构造一组嵌套的列表或字典。

编辑:我从你的澄清中看到,这些名称并不是节点路径。这就提出了另一种方法:

idx = {}
idx[0] = []
for node in results:
  child_list = []
  idx[node.Id] = child_list
  idx[node.ParentId].append((node, child_list))

这将构造一个元组数组树(!)。Idx[0]表示树的根。数组中的每个元素都是一个二元组,由节点本身及其所有子元素的列表组成。构造后,可以保留idx[0]并丢弃idx,除非您希望通过节点的ID访问节点。

考虑使用像neo4j这样的nosql工具来处理层次结构。 例如,像linkedin这样的网络应用程序使用couchbase(另一个nosql解决方案)

但是nosql只能用于数据集市级别的查询,而不能用于存储/维护事务

如果可以创建嵌套的哈希映射或数组,那么我只需从表的开头往下走,并将每个项添加到嵌套数组中。我必须跟踪每一行到根节点,以便知道要插入到嵌套数组中的哪一层。我可以使用记忆,这样我就不需要一遍又一遍地查找相同的父节点。

编辑:我会先将整个表读入一个数组,这样它就不会重复查询DB。当然,如果您的表非常大,这是不实际的。

在构建结构之后,我必须先对其进行深度遍历,并打印出HTML。

没有更好的基本方法来存储这些信息使用一个表(我可能是错的;),并希望看到一个更好的解决方案)。然而,如果您创建了一个使用动态创建的db表的方案,那么您以牺牲简单性和SQL地狱的风险为代价打开了一个全新的世界;)。