我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
当前回答
我发现这非常有用:创建与内核一样多的线程,并让它们执行(大量)任务(在本例中,调用shell程序):
import Queue
import threading
import multiprocessing
import subprocess
q = Queue.Queue()
for i in range(30): # Put 30 tasks in the queue
q.put(i)
def worker():
while True:
item = q.get()
# Execute a task: call a shell program and wait until it completes
subprocess.call("echo " + str(item), shell=True)
q.task_done()
cpus = multiprocessing.cpu_count() # Detect number of cores
print("Creating %d threads" % cpus)
for i in range(cpus):
t = threading.Thread(target=worker)
t.daemon = True
t.start()
q.join() # Block until all tasks are done
其他回答
对我来说,线程的最佳示例是监视异步事件。看看这个代码。
# thread_test.py
import threading
import time
class Monitor(threading.Thread):
def __init__(self, mon):
threading.Thread.__init__(self)
self.mon = mon
def run(self):
while True:
if self.mon[0] == 2:
print "Mon = 2"
self.mon[0] = 3;
您可以通过打开IPython会话并执行以下操作来使用此代码:
>>> from thread_test import Monitor
>>> a = [0]
>>> mon = Monitor(a)
>>> mon.start()
>>> a[0] = 2
Mon = 2
>>>a[0] = 2
Mon = 2
等几分钟
>>> a[0] = 2
Mon = 2
我在这里看到了很多没有执行实际工作的示例,它们大多是CPU限制的。这里是一个CPU绑定任务的示例,它计算1000万到1005万之间的所有素数。我在这里使用了所有四种方法:
import math
import timeit
import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
def time_stuff(fn):
"""
Measure time of execution of a function
"""
def wrapper(*args, **kwargs):
t0 = timeit.default_timer()
fn(*args, **kwargs)
t1 = timeit.default_timer()
print("{} seconds".format(t1 - t0))
return wrapper
def find_primes_in(nmin, nmax):
"""
Compute a list of prime numbers between the given minimum and maximum arguments
"""
primes = []
# Loop from minimum to maximum
for current in range(nmin, nmax + 1):
# Take the square root of the current number
sqrt_n = int(math.sqrt(current))
found = False
# Check if the any number from 2 to the square root + 1 divides the current numnber under consideration
for number in range(2, sqrt_n + 1):
# If divisible we have found a factor, hence this is not a prime number, lets move to the next one
if current % number == 0:
found = True
break
# If not divisible, add this number to the list of primes that we have found so far
if not found:
primes.append(current)
# I am merely printing the length of the array containing all the primes, but feel free to do what you want
print(len(primes))
@time_stuff
def sequential_prime_finder(nmin, nmax):
"""
Use the main process and main thread to compute everything in this case
"""
find_primes_in(nmin, nmax)
@time_stuff
def threading_prime_finder(nmin, nmax):
"""
If the minimum is 1000 and the maximum is 2000 and we have four workers,
1000 - 1250 to worker 1
1250 - 1500 to worker 2
1500 - 1750 to worker 3
1750 - 2000 to worker 4
so let’s split the minimum and maximum values according to the number of workers
"""
nrange = nmax - nmin
threads = []
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
# Start the thread with the minimum and maximum split up to compute
# Parallel computation will not work here due to the GIL since this is a CPU-bound task
t = threading.Thread(target = find_primes_in, args = (start, end))
threads.append(t)
t.start()
# Don’t forget to wait for the threads to finish
for t in threads:
t.join()
@time_stuff
def processing_prime_finder(nmin, nmax):
"""
Split the minimum, maximum interval similar to the threading method above, but use processes this time
"""
nrange = nmax - nmin
processes = []
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
p = multiprocessing.Process(target = find_primes_in, args = (start, end))
processes.append(p)
p.start()
for p in processes:
p.join()
@time_stuff
def thread_executor_prime_finder(nmin, nmax):
"""
Split the min max interval similar to the threading method, but use a thread pool executor this time.
This method is slightly faster than using pure threading as the pools manage threads more efficiently.
This method is still slow due to the GIL limitations since we are doing a CPU-bound task.
"""
nrange = nmax - nmin
with ThreadPoolExecutor(max_workers = 8) as e:
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
e.submit(find_primes_in, start, end)
@time_stuff
def process_executor_prime_finder(nmin, nmax):
"""
Split the min max interval similar to the threading method, but use the process pool executor.
This is the fastest method recorded so far as it manages process efficiently + overcomes GIL limitations.
RECOMMENDED METHOD FOR CPU-BOUND TASKS
"""
nrange = nmax - nmin
with ProcessPoolExecutor(max_workers = 8) as e:
for i in range(8):
start = int(nmin + i * nrange/8)
end = int(nmin + (i + 1) * nrange/8)
e.submit(find_primes_in, start, end)
def main():
nmin = int(1e7)
nmax = int(1.05e7)
print("Sequential Prime Finder Starting")
sequential_prime_finder(nmin, nmax)
print("Threading Prime Finder Starting")
threading_prime_finder(nmin, nmax)
print("Processing Prime Finder Starting")
processing_prime_finder(nmin, nmax)
print("Thread Executor Prime Finder Starting")
thread_executor_prime_finder(nmin, nmax)
print("Process Executor Finder Starting")
process_executor_prime_finder(nmin, nmax)
if __name__ == "__main__":
main()
以下是我的Mac OS X四核计算机的结果
Sequential Prime Finder Starting
9.708213827005238 seconds
Threading Prime Finder Starting
9.81836523200036 seconds
Processing Prime Finder Starting
3.2467174359990167 seconds
Thread Executor Prime Finder Starting
10.228896902000997 seconds
Process Executor Finder Starting
2.656402041000547 seconds
这很容易理解。这里有两种简单的线程处理方法。
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
def a(a=1, b=2):
print(a)
time.sleep(5)
print(b)
return a+b
def b(**kwargs):
if "a" in kwargs:
print("am b")
else:
print("nothing")
to_do=[]
executor = ThreadPoolExecutor(max_workers=4)
ex1=executor.submit(a)
to_do.append(ex1)
ex2=executor.submit(b, **{"a":1})
to_do.append(ex2)
for future in as_completed(to_do):
print("Future {} and Future Return is {}\n".format(future, future.result()))
print("threading")
to_do=[]
to_do.append(threading.Thread(target=a))
to_do.append(threading.Thread(target=b, kwargs={"a":1}))
for threads in to_do:
threads.start()
for threads in to_do:
threads.join()
作为第二个anwser的python3版本:
import queue as Queue
import threading
import urllib.request
# Called by each thread
def get_url(q, url):
q.put(urllib.request.urlopen(url).read())
theurls = ["http://google.com", "http://yahoo.com", "http://www.python.org","https://wiki.python.org/moin/"]
q = Queue.Queue()
def thread_func():
for u in theurls:
t = threading.Thread(target=get_url, args = (q,u))
t.daemon = True
t.start()
s = q.get()
def non_thread_func():
for u in theurls:
get_url(q,u)
s = q.get()
您可以测试它:
start = time.time()
thread_func()
end = time.time()
print(end - start)
start = time.time()
non_thread_func()
end = time.time()
print(end - start)
non_thread_func()花费的时间应该是thread_func()的4倍
注意:对于Python中的实际并行化,您应该使用多处理模块来分叉并行执行的多个进程(由于全局解释器锁,Python线程提供了交织,但实际上它们是串行执行的,而不是并行执行的,并且仅在交织I/O操作时有用)。
然而,如果您只是在寻找交错(或者正在执行可以并行化的I/O操作,尽管存在全局解释器锁),那么线程模块就是开始的地方。作为一个非常简单的例子,让我们考虑通过并行对子范围求和来对大范围求和的问题:
import threading
class SummingThread(threading.Thread):
def __init__(self,low,high):
super(SummingThread, self).__init__()
self.low=low
self.high=high
self.total=0
def run(self):
for i in range(self.low,self.high):
self.total+=i
thread1 = SummingThread(0,500000)
thread2 = SummingThread(500000,1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join() # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print result
请注意,以上是一个非常愚蠢的示例,因为它绝对没有I/O,并且由于全局解释器锁,虽然在CPython中交错执行(增加了上下文切换的开销),但仍将串行执行。