我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
当前回答
import threading
import requests
def send():
r = requests.get('https://www.stackoverlow.com')
thread = []
t = threading.Thread(target=send())
thread.append(t)
t.start()
其他回答
自2010年提出这个问题以来,如何使用带有映射和池的Python进行简单的多线程处理已经得到了真正的简化。
下面的代码来自一篇文章/博客文章,您应该明确查看(没有从属关系)-一行中的并行性:一个更好的日常线程任务模型。我将在下面总结一下——它最终只是几行代码:
from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)
以下是多线程版本:
results = []
for item in my_array:
results.append(my_function(item))
描述
Map是一个很酷的小函数,是将并行性轻松注入Python代码的关键。对于那些不熟悉的人来说,map是从Lisp这样的函数语言中提取出来的。它是一个将另一个函数映射到序列上的函数。Map为我们处理序列上的迭代,应用函数,并在最后将所有结果存储在一个方便的列表中。
实施
map函数的并行版本由两个库提供:multiprocessing,以及它鲜为人知但同样神奇的stepchild:multiprocessing.dummy。
multiprocessing.dummy与多处理模块完全相同,但使用线程(一个重要的区别-对CPU密集型任务使用多个进程;对I/O(和在I/O期间)使用线程):
multiprocessing.dummy复制了多处理的API,但它不过是线程模块的包装器。
import urllib2
from multiprocessing.dummy import Pool as ThreadPool
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
]
# Make the Pool of workers
pool = ThreadPool(4)
# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
# Close the pool and wait for the work to finish
pool.close()
pool.join()
计时结果:
Single thread: 14.4 seconds
4 Pool: 3.1 seconds
8 Pool: 1.4 seconds
13 Pool: 1.3 seconds
传递多个参数(仅在Python 3.3及更高版本中如此):
要传递多个数组,请执行以下操作:
results = pool.starmap(function, zip(list_a, list_b))
或者传递常量和数组:
results = pool.starmap(function, zip(itertools.repeat(constant), list_a))
如果您使用的是早期版本的Python,可以通过此解决方法传递多个参数)。
(感谢user136036提供的有用评论。)
这里是使用线程导入CSV的一个非常简单的示例。(图书馆的收录可能因不同的目的而有所不同。)
助手函数:
from threading import Thread
from project import app
import csv
def import_handler(csv_file_name):
thr = Thread(target=dump_async_csv_data, args=[csv_file_name])
thr.start()
def dump_async_csv_data(csv_file_name):
with app.app_context():
with open(csv_file_name) as File:
reader = csv.DictReader(File)
for row in reader:
# DB operation/query
驾驶员功能:
import_handler(csv_file_name)
我发现这非常有用:创建与内核一样多的线程,并让它们执行(大量)任务(在本例中,调用shell程序):
import Queue
import threading
import multiprocessing
import subprocess
q = Queue.Queue()
for i in range(30): # Put 30 tasks in the queue
q.put(i)
def worker():
while True:
item = q.get()
# Execute a task: call a shell program and wait until it completes
subprocess.call("echo " + str(item), shell=True)
q.task_done()
cpus = multiprocessing.cpu_count() # Detect number of cores
print("Creating %d threads" % cpus)
for i in range(cpus):
t = threading.Thread(target=worker)
t.daemon = True
t.start()
q.join() # Block until all tasks are done
以前的解决方案都没有在我的GNU/Linux服务器上使用多个内核(我没有管理员权限)。他们只是在一个核心上跑步。
我使用较低级别的os.fork接口来派生多个进程。这是对我有用的代码:
from os import fork
values = ['different', 'values', 'for', 'threads']
for i in range(len(values)):
p = fork()
if p == 0:
my_function(values[i])
break
下面的代码可以运行10个线程同时打印0到99之间的数字:
from threading import Thread
def test():
for i in range(0, 100):
print(i)
thread_list = []
for _ in range(0, 10):
thread = Thread(target=test)
thread_list.append(thread)
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
下面的代码是上述代码循环版本的简写,运行10个线程,同时打印0到99之间的数字:
from threading import Thread
def test():
[print(i) for i in range(0, 100)]
thread_list = [Thread(target=test) for _ in range(0, 10)]
[thread.start() for thread in thread_list]
[thread.join() for thread in thread_list]
结果如下:
...
99
83
97
84
98
99
85
86
87
88
...