我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。

如何清楚地显示为多线程划分的任务?


当前回答

借用本文,我们了解了如何在多线程、多处理和异步/异步之间进行选择及其用法。

Python 3有一个新的内置库,以实现并发和并行-concurrent.futures

因此,我将通过一个实验演示如何通过线程池运行四个任务(即.sleep()方法):

from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep, time

def concurrent(max_worker):
    futures = []
    tic = time()
    with ThreadPoolExecutor(max_workers=max_worker) as executor:
        futures.append(executor.submit(sleep, 2))  # Two seconds sleep
        futures.append(executor.submit(sleep, 1))
        futures.append(executor.submit(sleep, 7))
        futures.append(executor.submit(sleep, 3))
        for future in as_completed(futures):
            if future.result() is not None:
                print(future.result())
    print(f'Total elapsed time by {max_worker} workers:', time()-tic)

concurrent(5)
concurrent(4)
concurrent(3)
concurrent(2)
concurrent(1)

输出:

Total elapsed time by 5 workers: 7.007831811904907
Total elapsed time by 4 workers: 7.007944107055664
Total elapsed time by 3 workers: 7.003149509429932
Total elapsed time by 2 workers: 8.004627466201782
Total elapsed time by 1 workers: 13.013478994369507

[注]:

正如您在上面的结果中看到的,最好的情况是这四项任务有3名员工。如果有进程任务而不是I/O绑定或阻塞(多处理而不是线程),则可以将ThreadPoolExecutor更改为ProcessPoolExecutoor。

其他回答

Alex Martelli的回答对我有所帮助。不过,这里有一个我认为更有用的修改版本(至少对我来说)。

更新:可在Python 2和Python 3中使用

try:
    # For Python 3
    import queue
    from urllib.request import urlopen
except:
    # For Python 2 
    import Queue as queue
    from urllib2 import urlopen

import threading

worker_data = ['http://google.com', 'http://yahoo.com', 'http://bing.com']

# Load up a queue with your data. This will handle locking
q = queue.Queue()
for url in worker_data:
    q.put(url)

# Define a worker function
def worker(url_queue):
    queue_full = True
    while queue_full:
        try:
            # Get your data off the queue, and do some work
            url = url_queue.get(False)
            data = urlopen(url).read()
            print(len(data))

        except queue.Empty:
            queue_full = False

# Create as many threads as you want
thread_count = 5
for i in range(thread_count):
    t = threading.Thread(target=worker, args = (q,))
    t.start()

只需注意:线程不需要队列。

这是我可以想象的最简单的例子,它显示了10个并发运行的进程。

import threading
from random import randint
from time import sleep


def print_number(number):

    # Sleeps a random 1 to 10 seconds
    rand_int_var = randint(1, 10)
    sleep(rand_int_var)
    print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"

thread_list = []

for i in range(1, 10):

    # Instantiates the thread
    # (i) does not make a sequence, so (i,)
    t = threading.Thread(target=print_number, args=(i,))
    # Sticks the thread in a list so that it remains accessible
    thread_list.append(t)

# Starts threads
for thread in thread_list:
    thread.start()

# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
    thread.join()

# Demonstrates that the main process waited for threads to complete
print "Done"

Python 3具有启动并行任务的功能。这使我们的工作更容易。

它有线程池和进程池。

以下内容提供了一个见解:

ThreadPoolExecutor示例(源代码)

import concurrent.futures
import urllib.request

URLS = ['http://www.foxnews.com/',
        'http://www.cnn.com/',
        'http://europe.wsj.com/',
        'http://www.bbc.co.uk/',
        'http://some-made-up-domain.com/']

# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
    with urllib.request.urlopen(url, timeout=timeout) as conn:
        return conn.read()

# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
    # Start the load operations and mark each future with its URL
    future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception as exc:
            print('%r generated an exception: %s' % (url, exc))
        else:
            print('%r page is %d bytes' % (url, len(data)))

ProcessPoolExecutor(源)

import concurrent.futures
import math

PRIMES = [
    112272535095293,
    112582705942171,
    112272535095293,
    115280095190773,
    115797848077099,
    1099726899285419]

def is_prime(n):
    if n % 2 == 0:
        return False

    sqrt_n = int(math.floor(math.sqrt(n)))
    for i in range(3, sqrt_n + 1, 2):
        if n % i == 0:
            return False
    return True

def main():
    with concurrent.futures.ProcessPoolExecutor() as executor:
        for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
            print('%d is prime: %s' % (number, prime))

if __name__ == '__main__':
    main()

以前的解决方案都没有在我的GNU/Linux服务器上使用多个内核(我没有管理员权限)。他们只是在一个核心上跑步。

我使用较低级别的os.fork接口来派生多个进程。这是对我有用的代码:

from os import fork

values = ['different', 'values', 'for', 'threads']

for i in range(len(values)):
    p = fork()
    if p == 0:
        my_function(values[i])
        break

使用全新的concurrent.futures模块

def sqr(val):
    import time
    time.sleep(0.1)
    return val * val

def process_result(result):
    print(result)

def process_these_asap(tasks):
    import concurrent.futures

    with concurrent.futures.ProcessPoolExecutor() as executor:
        futures = []
        for task in tasks:
            futures.append(executor.submit(sqr, task))

        for future in concurrent.futures.as_completed(futures):
            process_result(future.result())
        # Or instead of all this just do:
        # results = executor.map(sqr, tasks)
        # list(map(process_result, results))

def main():
    tasks = list(range(10))
    print('Processing {} tasks'.format(len(tasks)))
    process_these_asap(tasks)
    print('Done')
    return 0

if __name__ == '__main__':
    import sys
    sys.exit(main())

执行器方法对于所有以前接触过Java的人来说似乎都很熟悉。

还有一个附带说明:为了保持宇宙的正常,如果你不使用上下文,不要忘记关闭你的池/执行器(这是如此棒,它为你做了)