我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。

如何清楚地显示为多线程划分的任务?


当前回答

借用本文,我们了解了如何在多线程、多处理和异步/异步之间进行选择及其用法。

Python 3有一个新的内置库,以实现并发和并行-concurrent.futures

因此,我将通过一个实验演示如何通过线程池运行四个任务(即.sleep()方法):

from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep, time

def concurrent(max_worker):
    futures = []
    tic = time()
    with ThreadPoolExecutor(max_workers=max_worker) as executor:
        futures.append(executor.submit(sleep, 2))  # Two seconds sleep
        futures.append(executor.submit(sleep, 1))
        futures.append(executor.submit(sleep, 7))
        futures.append(executor.submit(sleep, 3))
        for future in as_completed(futures):
            if future.result() is not None:
                print(future.result())
    print(f'Total elapsed time by {max_worker} workers:', time()-tic)

concurrent(5)
concurrent(4)
concurrent(3)
concurrent(2)
concurrent(1)

输出:

Total elapsed time by 5 workers: 7.007831811904907
Total elapsed time by 4 workers: 7.007944107055664
Total elapsed time by 3 workers: 7.003149509429932
Total elapsed time by 2 workers: 8.004627466201782
Total elapsed time by 1 workers: 13.013478994369507

[注]:

正如您在上面的结果中看到的,最好的情况是这四项任务有3名员工。如果有进程任务而不是I/O绑定或阻塞(多处理而不是线程),则可以将ThreadPoolExecutor更改为ProcessPoolExecutoor。

其他回答

import threading
import requests

def send():

  r = requests.get('https://www.stackoverlow.com')

thread = []
t = threading.Thread(target=send())
thread.append(t)
t.start()

自2010年提出这个问题以来,如何使用带有映射和池的Python进行简单的多线程处理已经得到了真正的简化。

下面的代码来自一篇文章/博客文章,您应该明确查看(没有从属关系)-一行中的并行性:一个更好的日常线程任务模型。我将在下面总结一下——它最终只是几行代码:

from multiprocessing.dummy import Pool as ThreadPool
pool = ThreadPool(4)
results = pool.map(my_function, my_array)

以下是多线程版本:

results = []
for item in my_array:
    results.append(my_function(item))

描述

Map是一个很酷的小函数,是将并行性轻松注入Python代码的关键。对于那些不熟悉的人来说,map是从Lisp这样的函数语言中提取出来的。它是一个将另一个函数映射到序列上的函数。Map为我们处理序列上的迭代,应用函数,并在最后将所有结果存储在一个方便的列表中。


实施

map函数的并行版本由两个库提供:multiprocessing,以及它鲜为人知但同样神奇的stepchild:multiprocessing.dummy。

multiprocessing.dummy与多处理模块完全相同,但使用线程(一个重要的区别-对CPU密集型任务使用多个进程;对I/O(和在I/O期间)使用线程):

multiprocessing.dummy复制了多处理的API,但它不过是线程模块的包装器。

import urllib2
from multiprocessing.dummy import Pool as ThreadPool

urls = [
  'http://www.python.org',
  'http://www.python.org/about/',
  'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
  'http://www.python.org/doc/',
  'http://www.python.org/download/',
  'http://www.python.org/getit/',
  'http://www.python.org/community/',
  'https://wiki.python.org/moin/',
]

# Make the Pool of workers
pool = ThreadPool(4)

# Open the URLs in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)

# Close the pool and wait for the work to finish
pool.close()
pool.join()

计时结果:

Single thread:   14.4 seconds
       4 Pool:   3.1 seconds
       8 Pool:   1.4 seconds
      13 Pool:   1.3 seconds

传递多个参数(仅在Python 3.3及更高版本中如此):

要传递多个数组,请执行以下操作:

results = pool.starmap(function, zip(list_a, list_b))

或者传递常量和数组:

results = pool.starmap(function, zip(itertools.repeat(constant), list_a))

如果您使用的是早期版本的Python,可以通过此解决方法传递多个参数)。

(感谢user136036提供的有用评论。)

注意:对于Python中的实际并行化,您应该使用多处理模块来分叉并行执行的多个进程(由于全局解释器锁,Python线程提供了交织,但实际上它们是串行执行的,而不是并行执行的,并且仅在交织I/O操作时有用)。

然而,如果您只是在寻找交错(或者正在执行可以并行化的I/O操作,尽管存在全局解释器锁),那么线程模块就是开始的地方。作为一个非常简单的例子,让我们考虑通过并行对子范围求和来对大范围求和的问题:

import threading

class SummingThread(threading.Thread):
     def __init__(self,low,high):
         super(SummingThread, self).__init__()
         self.low=low
         self.high=high
         self.total=0

     def run(self):
         for i in range(self.low,self.high):
             self.total+=i


thread1 = SummingThread(0,500000)
thread2 = SummingThread(500000,1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join()  # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print result

请注意,以上是一个非常愚蠢的示例,因为它绝对没有I/O,并且由于全局解释器锁,虽然在CPython中交错执行(增加了上下文切换的开销),但仍将串行执行。

与其他提到的一样,由于GIL,CPython只能在I/O等待时使用线程。

如果您想从多个内核中获得CPU绑定任务的好处,请使用多处理:

from multiprocessing import Process

def f(name):
    print 'hello', name

if __name__ == '__main__':
    p = Process(target=f, args=('bob',))
    p.start()
    p.join()

这很容易理解。这里有两种简单的线程处理方法。

import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading

def a(a=1, b=2):
    print(a)
    time.sleep(5)
    print(b)
    return a+b

def b(**kwargs):
    if "a" in kwargs:
        print("am b")
    else:
        print("nothing")
        
to_do=[]
executor = ThreadPoolExecutor(max_workers=4)
ex1=executor.submit(a)
to_do.append(ex1)
ex2=executor.submit(b, **{"a":1})
to_do.append(ex2)

for future in as_completed(to_do):
    print("Future {} and Future Return is {}\n".format(future, future.result()))

print("threading")

to_do=[]
to_do.append(threading.Thread(target=a))
to_do.append(threading.Thread(target=b, kwargs={"a":1}))

for threads in to_do:
    threads.start()
    
for threads in to_do:
    threads.join()