我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。

如何清楚地显示为多线程划分的任务?


当前回答

只需注意:线程不需要队列。

这是我可以想象的最简单的例子,它显示了10个并发运行的进程。

import threading
from random import randint
from time import sleep


def print_number(number):

    # Sleeps a random 1 to 10 seconds
    rand_int_var = randint(1, 10)
    sleep(rand_int_var)
    print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"

thread_list = []

for i in range(1, 10):

    # Instantiates the thread
    # (i) does not make a sequence, so (i,)
    t = threading.Thread(target=print_number, args=(i,))
    # Sticks the thread in a list so that it remains accessible
    thread_list.append(t)

# Starts threads
for thread in thread_list:
    thread.start()

# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
    thread.join()

# Demonstrates that the main process waited for threads to complete
print "Done"

其他回答

以前的解决方案都没有在我的GNU/Linux服务器上使用多个内核(我没有管理员权限)。他们只是在一个核心上跑步。

我使用较低级别的os.fork接口来派生多个进程。这是对我有用的代码:

from os import fork

values = ['different', 'values', 'for', 'threads']

for i in range(len(values)):
    p = fork()
    if p == 0:
        my_function(values[i])
        break

只需注意:线程不需要队列。

这是我可以想象的最简单的例子,它显示了10个并发运行的进程。

import threading
from random import randint
from time import sleep


def print_number(number):

    # Sleeps a random 1 to 10 seconds
    rand_int_var = randint(1, 10)
    sleep(rand_int_var)
    print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"

thread_list = []

for i in range(1, 10):

    # Instantiates the thread
    # (i) does not make a sequence, so (i,)
    t = threading.Thread(target=print_number, args=(i,))
    # Sticks the thread in a list so that it remains accessible
    thread_list.append(t)

# Starts threads
for thread in thread_list:
    thread.start()

# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
    thread.join()

# Demonstrates that the main process waited for threads to complete
print "Done"

对我来说,线程的最佳示例是监视异步事件。看看这个代码。

# thread_test.py
import threading
import time

class Monitor(threading.Thread):
    def __init__(self, mon):
        threading.Thread.__init__(self)
        self.mon = mon

    def run(self):
        while True:
            if self.mon[0] == 2:
                print "Mon = 2"
                self.mon[0] = 3;

您可以通过打开IPython会话并执行以下操作来使用此代码:

>>> from thread_test import Monitor
>>> a = [0]
>>> mon = Monitor(a)
>>> mon.start()
>>> a[0] = 2
Mon = 2
>>>a[0] = 2
Mon = 2

等几分钟

>>> a[0] = 2
Mon = 2
import threading
import requests

def send():

  r = requests.get('https://www.stackoverlow.com')

thread = []
t = threading.Thread(target=send())
thread.append(t)
t.start()

作为第二个anwser的python3版本:

import queue as Queue
import threading
import urllib.request

# Called by each thread
def get_url(q, url):
    q.put(urllib.request.urlopen(url).read())

theurls = ["http://google.com", "http://yahoo.com", "http://www.python.org","https://wiki.python.org/moin/"]

q = Queue.Queue()
def thread_func():
    for u in theurls:
        t = threading.Thread(target=get_url, args = (q,u))
        t.daemon = True
        t.start()

    s = q.get()
    
def non_thread_func():
    for u in theurls:
        get_url(q,u)
        

    s = q.get()
   

您可以测试它:

start = time.time()
thread_func()
end = time.time()
print(end - start)

start = time.time()
non_thread_func()
end = time.time()
print(end - start)

non_thread_func()花费的时间应该是thread_func()的4倍