我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。

如何清楚地显示为多线程划分的任务?


当前回答

下面的代码可以运行10个线程同时打印0到99之间的数字:

from threading import Thread

def test():
    for i in range(0, 100):
        print(i)

thread_list = []

for _ in range(0, 10):
    thread = Thread(target=test)
    thread_list.append(thread)

for thread in thread_list:
    thread.start()

for thread in thread_list:
    thread.join()

下面的代码是上述代码循环版本的简写,运行10个线程,同时打印0到99之间的数字:

from threading import Thread

def test():
    [print(i) for i in range(0, 100)]

thread_list = [Thread(target=test) for _ in range(0, 10)]

[thread.start() for thread in thread_list]

[thread.join() for thread in thread_list]

结果如下:

...
99
83
97
84
98
99
85
86
87
88
...

其他回答

这里是使用线程导入CSV的一个非常简单的示例。(图书馆的收录可能因不同的目的而有所不同。)

助手函数:

from threading import Thread
from project import app
import csv


def import_handler(csv_file_name):
    thr = Thread(target=dump_async_csv_data, args=[csv_file_name])
    thr.start()

def dump_async_csv_data(csv_file_name):
    with app.app_context():
        with open(csv_file_name) as File:
            reader = csv.DictReader(File)
            for row in reader:
                # DB operation/query

驾驶员功能:

import_handler(csv_file_name)

对我来说,线程的最佳示例是监视异步事件。看看这个代码。

# thread_test.py
import threading
import time

class Monitor(threading.Thread):
    def __init__(self, mon):
        threading.Thread.__init__(self)
        self.mon = mon

    def run(self):
        while True:
            if self.mon[0] == 2:
                print "Mon = 2"
                self.mon[0] = 3;

您可以通过打开IPython会话并执行以下操作来使用此代码:

>>> from thread_test import Monitor
>>> a = [0]
>>> mon = Monitor(a)
>>> mon.start()
>>> a[0] = 2
Mon = 2
>>>a[0] = 2
Mon = 2

等几分钟

>>> a[0] = 2
Mon = 2

注意:对于Python中的实际并行化,您应该使用多处理模块来分叉并行执行的多个进程(由于全局解释器锁,Python线程提供了交织,但实际上它们是串行执行的,而不是并行执行的,并且仅在交织I/O操作时有用)。

然而,如果您只是在寻找交错(或者正在执行可以并行化的I/O操作,尽管存在全局解释器锁),那么线程模块就是开始的地方。作为一个非常简单的例子,让我们考虑通过并行对子范围求和来对大范围求和的问题:

import threading

class SummingThread(threading.Thread):
     def __init__(self,low,high):
         super(SummingThread, self).__init__()
         self.low=low
         self.high=high
         self.total=0

     def run(self):
         for i in range(self.low,self.high):
             self.total+=i


thread1 = SummingThread(0,500000)
thread2 = SummingThread(500000,1000000)
thread1.start() # This actually causes the thread to run
thread2.start()
thread1.join()  # This waits until the thread has completed
thread2.join()
# At this point, both threads have completed
result = thread1.total + thread2.total
print result

请注意,以上是一个非常愚蠢的示例,因为它绝对没有I/O,并且由于全局解释器锁,虽然在CPython中交错执行(增加了上下文切换的开销),但仍将串行执行。

只需注意:线程不需要队列。

这是我可以想象的最简单的例子,它显示了10个并发运行的进程。

import threading
from random import randint
from time import sleep


def print_number(number):

    # Sleeps a random 1 to 10 seconds
    rand_int_var = randint(1, 10)
    sleep(rand_int_var)
    print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"

thread_list = []

for i in range(1, 10):

    # Instantiates the thread
    # (i) does not make a sequence, so (i,)
    t = threading.Thread(target=print_number, args=(i,))
    # Sticks the thread in a list so that it remains accessible
    thread_list.append(t)

# Starts threads
for thread in thread_list:
    thread.start()

# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
    thread.join()

# Demonstrates that the main process waited for threads to complete
print "Done"

Python 3具有启动并行任务的功能。这使我们的工作更容易。

它有线程池和进程池。

以下内容提供了一个见解:

ThreadPoolExecutor示例(源代码)

import concurrent.futures
import urllib.request

URLS = ['http://www.foxnews.com/',
        'http://www.cnn.com/',
        'http://europe.wsj.com/',
        'http://www.bbc.co.uk/',
        'http://some-made-up-domain.com/']

# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
    with urllib.request.urlopen(url, timeout=timeout) as conn:
        return conn.read()

# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
    # Start the load operations and mark each future with its URL
    future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception as exc:
            print('%r generated an exception: %s' % (url, exc))
        else:
            print('%r page is %d bytes' % (url, len(data)))

ProcessPoolExecutor(源)

import concurrent.futures
import math

PRIMES = [
    112272535095293,
    112582705942171,
    112272535095293,
    115280095190773,
    115797848077099,
    1099726899285419]

def is_prime(n):
    if n % 2 == 0:
        return False

    sqrt_n = int(math.floor(math.sqrt(n)))
    for i in range(3, sqrt_n + 1, 2):
        if n % i == 0:
            return False
    return True

def main():
    with concurrent.futures.ProcessPoolExecutor() as executor:
        for number, prime in zip(PRIMES, executor.map(is_prime, PRIMES)):
            print('%d is prime: %s' % (number, prime))

if __name__ == '__main__':
    main()