我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
当前回答
下面的代码可以运行10个线程同时打印0到99之间的数字:
from threading import Thread
def test():
for i in range(0, 100):
print(i)
thread_list = []
for _ in range(0, 10):
thread = Thread(target=test)
thread_list.append(thread)
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
下面的代码是上述代码循环版本的简写,运行10个线程,同时打印0到99之间的数字:
from threading import Thread
def test():
[print(i) for i in range(0, 100)]
thread_list = [Thread(target=test) for _ in range(0, 10)]
[thread.start() for thread in thread_list]
[thread.join() for thread in thread_list]
结果如下:
...
99
83
97
84
98
99
85
86
87
88
...
其他回答
大多数文档和教程都使用Python的“线程和队列”模块,对于初学者来说,它们可能会让人不知所措。
也许可以考虑Python 3的concurrent.futures.ThreadPoolExecutor模块。
结合子句和列表理解,这可能是一个真正的魅力。
from concurrent.futures import ThreadPoolExecutor, as_completed
def get_url(url):
# Your actual program here. Using threading.Lock() if necessary
return ""
# List of URLs to fetch
urls = ["url1", "url2"]
with ThreadPoolExecutor(max_workers = 5) as executor:
# Create threads
futures = {executor.submit(get_url, url) for url in urls}
# as_completed() gives you the threads once finished
for f in as_completed(futures):
# Get the results
rs = f.result()
我发现这非常有用:创建与内核一样多的线程,并让它们执行(大量)任务(在本例中,调用shell程序):
import Queue
import threading
import multiprocessing
import subprocess
q = Queue.Queue()
for i in range(30): # Put 30 tasks in the queue
q.put(i)
def worker():
while True:
item = q.get()
# Execute a task: call a shell program and wait until it completes
subprocess.call("echo " + str(item), shell=True)
q.task_done()
cpus = multiprocessing.cpu_count() # Detect number of cores
print("Creating %d threads" % cpus)
for i in range(cpus):
t = threading.Thread(target=worker)
t.daemon = True
t.start()
q.join() # Block until all tasks are done
import threading
import requests
def send():
r = requests.get('https://www.stackoverlow.com')
thread = []
t = threading.Thread(target=send())
thread.append(t)
t.start()
对我来说,线程的最佳示例是监视异步事件。看看这个代码。
# thread_test.py
import threading
import time
class Monitor(threading.Thread):
def __init__(self, mon):
threading.Thread.__init__(self)
self.mon = mon
def run(self):
while True:
if self.mon[0] == 2:
print "Mon = 2"
self.mon[0] = 3;
您可以通过打开IPython会话并执行以下操作来使用此代码:
>>> from thread_test import Monitor
>>> a = [0]
>>> mon = Monitor(a)
>>> mon.start()
>>> a[0] = 2
Mon = 2
>>>a[0] = 2
Mon = 2
等几分钟
>>> a[0] = 2
Mon = 2
使用线程/多处理的最简单方法是使用更多高级库,如autothread。
import autothread
from time import sleep as heavyworkload
@autothread.multithreaded() # <-- This is all you need to add
def example(x: int, y: int):
heavyworkload(1)
return x*y
现在,您可以为函数提供int列表。Autothread将为您处理所有事务,并只提供并行计算的结果。
result = example([1, 2, 3, 4, 5], 10)