我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
我正在努力理解Python中的线程。我看过文档和示例,但坦率地说,许多示例过于复杂,我很难理解它们。
如何清楚地显示为多线程划分的任务?
当前回答
下面的代码可以运行10个线程同时打印0到99之间的数字:
from threading import Thread
def test():
for i in range(0, 100):
print(i)
thread_list = []
for _ in range(0, 10):
thread = Thread(target=test)
thread_list.append(thread)
for thread in thread_list:
thread.start()
for thread in thread_list:
thread.join()
下面的代码是上述代码循环版本的简写,运行10个线程,同时打印0到99之间的数字:
from threading import Thread
def test():
[print(i) for i in range(0, 100)]
thread_list = [Thread(target=test) for _ in range(0, 10)]
[thread.start() for thread in thread_list]
[thread.join() for thread in thread_list]
结果如下:
...
99
83
97
84
98
99
85
86
87
88
...
其他回答
给定函数f,如下所示:
import threading
threading.Thread(target=f).start()
向f传递参数
threading.Thread(target=f, args=(a,b,c)).start()
Alex Martelli的回答对我有所帮助。不过,这里有一个我认为更有用的修改版本(至少对我来说)。
更新:可在Python 2和Python 3中使用
try:
# For Python 3
import queue
from urllib.request import urlopen
except:
# For Python 2
import Queue as queue
from urllib2 import urlopen
import threading
worker_data = ['http://google.com', 'http://yahoo.com', 'http://bing.com']
# Load up a queue with your data. This will handle locking
q = queue.Queue()
for url in worker_data:
q.put(url)
# Define a worker function
def worker(url_queue):
queue_full = True
while queue_full:
try:
# Get your data off the queue, and do some work
url = url_queue.get(False)
data = urlopen(url).read()
print(len(data))
except queue.Empty:
queue_full = False
# Create as many threads as you want
thread_count = 5
for i in range(thread_count):
t = threading.Thread(target=worker, args = (q,))
t.start()
使用线程/多处理的最简单方法是使用更多高级库,如autothread。
import autothread
from time import sleep as heavyworkload
@autothread.multithreaded() # <-- This is all you need to add
def example(x: int, y: int):
heavyworkload(1)
return x*y
现在,您可以为函数提供int列表。Autothread将为您处理所有事务,并只提供并行计算的结果。
result = example([1, 2, 3, 4, 5], 10)
我想提供一个简单的例子,以及我在自己解决这个问题时发现有用的解释。
在这个答案中,您将找到一些关于Python的GIL(全局解释器锁)的信息,以及一个使用multiprocessing.dummy编写的简单日常示例,以及一些简单的基准测试。
全局解释器锁(GIL)
Python不允许真正意义上的多线程。它有一个多线程包,但是如果你想多线程来加快你的代码,那么使用它通常不是一个好主意。
Python有一个称为全局解释器锁(GIL)的构造。GIL确保在任何时候只能执行一个“线程”。一个线程获取GIL,做一些工作,然后将GIL传递给下一个线程。
这种情况发生得很快,因此在人眼看来,您的线程似乎是并行执行的,但它们实际上只是轮流使用相同的CPU内核。
所有这些GIL传递都增加了执行开销。这意味着如果你想让你的代码运行得更快,那么使用线程打包通常不是个好主意。
使用Python的线程包是有原因的。如果你想同时运行一些事情,而效率不是一个问题,那就很好,也很方便。或者,如果您运行的代码需要等待一些东西(比如一些I/O),那么这可能很有意义。但是线程库不允许您使用额外的CPU内核。
多线程可以外包给操作系统(通过执行多线程处理),以及一些调用Python代码的外部应用程序(例如,Spark或Hadoop),或者Python代码调用的一些代码(例如:您可以让Python代码调用一个C函数来完成昂贵的多线程任务)。
为什么这很重要
因为很多人在了解GIL是什么之前,会花很多时间在他们的Python多线程代码中寻找瓶颈。
一旦这些信息清楚,下面是我的代码:
#!/bin/python
from multiprocessing.dummy import Pool
from subprocess import PIPE,Popen
import time
import os
# In the variable pool_size we define the "parallelness".
# For CPU-bound tasks, it doesn't make sense to create more Pool processes
# than you have cores to run them on.
#
# On the other hand, if you are using I/O-bound tasks, it may make sense
# to create a quite a few more Pool processes than cores, since the processes
# will probably spend most their time blocked (waiting for I/O to complete).
pool_size = 8
def do_ping(ip):
if os.name == 'nt':
print ("Using Windows Ping to " + ip)
proc = Popen(['ping', ip], stdout=PIPE)
return proc.communicate()[0]
else:
print ("Using Linux / Unix Ping to " + ip)
proc = Popen(['ping', ip, '-c', '4'], stdout=PIPE)
return proc.communicate()[0]
os.system('cls' if os.name=='nt' else 'clear')
print ("Running using threads\n")
start_time = time.time()
pool = Pool(pool_size)
website_names = ["www.google.com","www.facebook.com","www.pinterest.com","www.microsoft.com"]
result = {}
for website_name in website_names:
result[website_name] = pool.apply_async(do_ping, args=(website_name,))
pool.close()
pool.join()
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))
# Now we do the same without threading, just to compare time
print ("\nRunning NOT using threads\n")
start_time = time.time()
for website_name in website_names:
do_ping(website_name)
print ("\n--- Execution took {} seconds ---".format((time.time() - start_time)))
# Here's one way to print the final output from the threads
output = {}
for key, value in result.items():
output[key] = value.get()
print ("\nOutput aggregated in a Dictionary:")
print (output)
print ("\n")
print ("\nPretty printed output: ")
for key, value in output.items():
print (key + "\n")
print (value)
只需注意:线程不需要队列。
这是我可以想象的最简单的例子,它显示了10个并发运行的进程。
import threading
from random import randint
from time import sleep
def print_number(number):
# Sleeps a random 1 to 10 seconds
rand_int_var = randint(1, 10)
sleep(rand_int_var)
print "Thread " + str(number) + " slept for " + str(rand_int_var) + " seconds"
thread_list = []
for i in range(1, 10):
# Instantiates the thread
# (i) does not make a sequence, so (i,)
t = threading.Thread(target=print_number, args=(i,))
# Sticks the thread in a list so that it remains accessible
thread_list.append(t)
# Starts threads
for thread in thread_list:
thread.start()
# This blocks the calling thread until the thread whose join() method is called is terminated.
# From http://docs.python.org/2/library/threading.html#thread-objects
for thread in thread_list:
thread.join()
# Demonstrates that the main process waited for threads to complete
print "Done"