我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
用t-sql编码
点为(@px, @py),线段从(@ax, @ay)到(@bx, @by)
create function fn_sqr (@NumberToSquare decimal(18,10))
returns decimal(18,10)
as
begin
declare @Result decimal(18,10)
set @Result = @NumberToSquare * @NumberToSquare
return @Result
end
go
create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
declare @Result decimal(18,10)
set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
return @Result
end
go
create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
declare @l2 decimal(18,10)
set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
if @l2 = 0
return dbo.fn_Distance(@px, @py, @ax, @ay)
declare @t decimal(18,10)
set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
if (@t < 0)
return dbo.fn_Distance(@px, @py, @ax, @ay);
if (@t > 1)
return dbo.fn_Distance(@px, @py, @bx, @by);
return dbo.fn_Distance(@px, @py, @ax + @t * (@bx - @ax), @ay + @t * (@by - @ay))
end
go
create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10))
returns decimal(18,10)
as
begin
return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go
--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1)
--result = 2.2360679775
--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1)
--result = 2.4961508830
--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1)
--result = 0.0000000000
其他回答
现在我的解决方案...... (Javascript)
这是非常快的,因为我试图避免任何数学。战俘的功能。
如你所见,在函数的最后,我得到了直线的距离。
代码来自lib http://www.draw2d.org/graphiti/jsdoc/#!/例子
/**
* Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
* A simple hit test.
*
* @return {boolean}
* @static
* @private
* @param {Number} coronaWidth the accepted corona for the hit test
* @param {Number} X1 x coordinate of the start point of the line
* @param {Number} Y1 y coordinate of the start point of the line
* @param {Number} X2 x coordinate of the end point of the line
* @param {Number} Y2 y coordinate of the end point of the line
* @param {Number} px x coordinate of the point to test
* @param {Number} py y coordinate of the point to test
**/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1, X2, Y2, px, py)
{
// Adjust vectors relative to X1,Y1
// X2,Y2 becomes relative vector from X1,Y1 to end of segment
X2 -= X1;
Y2 -= Y1;
// px,py becomes relative vector from X1,Y1 to test point
px -= X1;
py -= Y1;
var dotprod = px * X2 + py * Y2;
var projlenSq;
if (dotprod <= 0.0) {
// px,py is on the side of X1,Y1 away from X2,Y2
// distance to segment is length of px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// switch to backwards vectors relative to X2,Y2
// X2,Y2 are already the negative of X1,Y1=>X2,Y2
// to get px,py to be the negative of px,py=>X2,Y2
// the dot product of two negated vectors is the same
// as the dot product of the two normal vectors
px = X2 - px;
py = Y2 - py;
dotprod = px * X2 + py * Y2;
if (dotprod <= 0.0) {
// px,py is on the side of X2,Y2 away from X1,Y1
// distance to segment is length of (backwards) px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// px,py is between X1,Y1 and X2,Y2
// dotprod is the length of the px,py vector
// projected on the X2,Y2=>X1,Y1 vector times the
// length of the X2,Y2=>X1,Y1 vector
projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
}
}
// Distance to line is now the length of the relative point
// vector minus the length of its projection onto the line
// (which is zero if the projection falls outside the range
// of the line segment).
var lenSq = px * px + py * py - projlenSq;
if (lenSq < 0) {
lenSq = 0;
}
return Math.sqrt(lenSq)<coronaWidth;
};
嘿,我昨天才写的。它在Actionscript 3.0中,基本上是Javascript,尽管你可能没有相同的Point类。
//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
var nearestPt:Point; //closest point on seqment to pt
var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
var bLenSq:Number = dot( b, b ); //Segment length squared
if( keyDot <= 0 ) //pt is "behind" st, use st
{
nearestPt = st
}
else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
{
nearestPt = st.add(b);
}
else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
{
var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
nearestPt = st.add(partOfB);
}
var dist:Number = (pt.subtract(nearestPt)).length;
return dist;
}
此外,这里有一个关于这个问题的相当完整和可读的讨论:notejot.com
GLSL版:
// line (a -> b ) point p[enter image description here][1]
float distanceToLine(vec2 a, vec2 b, vec2 p) {
float aside = dot((p - a),(b - a));
if(aside< 0.0) return length(p-a);
float bside = dot((p - b),(a - b));
if(bside< 0.0) return length(p-b);
vec2 pointOnLine = (bside*a + aside*b)/pow(length(a-b),2.0);
return length(p - pointOnLine);
}
in R
#distance beetween segment ab and point c in 2D space
getDistance_ort_2 <- function(a, b, c){
#go to complex numbers
A<-c(a[1]+1i*a[2],b[1]+1i*b[2])
q=c[1]+1i*c[2]
#function to get coefficients of line (ab)
getAlphaBeta <- function(A)
{ a<-Re(A[2])-Re(A[1])
b<-Im(A[2])-Im(A[1])
ab<-as.numeric()
ab[1] <- -Re(A[1])*b/a+Im(A[1])
ab[2] <-b/a
if(Im(A[1])==Im(A[2])) ab<- c(Im(A[1]),0)
if(Re(A[1])==Re(A[2])) ab <- NA
return(ab)
}
#function to get coefficients of line ortogonal to line (ab) which goes through point q
getAlphaBeta_ort<-function(A,q)
{ ab <- getAlphaBeta(A)
coef<-c(Re(q)/ab[2]+Im(q),-1/ab[2])
if(Re(A[1])==Re(A[2])) coef<-c(Im(q),0)
return(coef)
}
#function to get coordinates of interception point
#between line (ab) and its ortogonal which goes through point q
getIntersection_ort <- function(A, q){
A.ab <- getAlphaBeta(A)
q.ab <- getAlphaBeta_ort(A,q)
if (!is.na(A.ab[1])&A.ab[2]==0) {
x<-Re(q)
y<-Im(A[1])}
if (is.na(A.ab[1])) {
x<-Re(A[1])
y<-Im(q)
}
if (!is.na(A.ab[1])&A.ab[2]!=0) {
x <- (q.ab[1] - A.ab[1])/(A.ab[2] - q.ab[2])
y <- q.ab[1] + q.ab[2]*x}
xy <- x + 1i*y
return(xy)
}
intersect<-getIntersection_ort(A,q)
if ((Mod(A[1]-intersect)+Mod(A[2]-intersect))>Mod(A[1]-A[2])) {dist<-min(Mod(A[1]-q),Mod(A[2]-q))
} else dist<-Mod(q-intersect)
return(dist)
}
省道和颤振的解决方法:
import 'dart:math' as math;
class Utils {
static double shortestDistance(Point p1, Point p2, Point p3){
double px = p2.x - p1.x;
double py = p2.y - p1.y;
double temp = (px*px) + (py*py);
double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
double x = p1.x + u*px;
double y = p1.y + u*py;
double dx = x - p3.x;
double dy = y - p3.y;
double dist = math.sqrt(dx*dx+dy*dy);
return dist;
}
}
class Point {
double x;
double y;
Point(this.x, this.y);
}