训练多层感知器时,历元和迭代的区别是什么?


当前回答

根据我的理解,当你需要训练一个NN时,你需要一个包含许多数据项的大型数据集。在训练神经网络时,数据项一个一个地进入神经网络,这称为迭代;当整个数据集通过时,它被称为epoch。

其他回答

在神经网络术语中:

一个epoch =所有训练示例的一个向前传递和一个向后传递 批大小=一次向前/向后传递中训练示例的数量。批处理大小越大,所需的内存空间就越大。 迭代次数=通过次数,每次通过使用[批大小]示例的数量。需要明确的是,一次传球=一次向前传球+一次向后传球(我们不把向前传球和向后传球算作两次不同的传球)。

例如:如果你有1000个训练样本,你的批处理大小是500,那么将需要2次迭代来完成1个epoch。

供参考:权衡批大小和迭代次数来训练神经网络


术语“批处理”是模棱两可的:有些人用它来表示整个训练集,有些人用它来指代一次向前/向后传递中的训练示例的数量(就像我在这个回答中所做的那样)。为了避免这种歧义,并明确batch对应于一次正向/向后传递中训练示例的数量,可以使用术语mini-batch。

许多神经网络训练算法都涉及到将整个数据集多次呈现给神经网络。通常,整个数据集的单一表示被称为“epoch”。相比之下,一些算法一次只向神经网络提供一个案例的数据。

“迭代”是一个更一般的术语,但既然你和“epoch”一起问了这个词,我假设你的来源是指一个单一案例对神经网络的呈现。

根据我的理解,当你需要训练一个NN时,你需要一个包含许多数据项的大型数据集。在训练神经网络时,数据项一个一个地进入神经网络,这称为迭代;当整个数据集通过时,它被称为epoch。

一个epoch包含几个迭代。这就是这个时代。让我们把epoch定义为训练神经网络时在数据集上的迭代次数。

我认为迭代相当于批SGD中的单批正向+反向。Epoch将遍历整个数据集一次(正如其他人提到的那样)。