训练多层感知器时,历元和迭代的区别是什么?
当前回答
通常,你会把你的测试集分成小批,让网络从中学习,并让训练在你的层数中一步一步地进行,一直应用梯度下降。所有这些小步骤都可以称为迭代。
一个epoch对应于整个训练集通过整个网络一次。限制这种情况是很有用的,例如对抗过拟合。
其他回答
我认为迭代相当于批SGD中的单批正向+反向。Epoch将遍历整个数据集一次(正如其他人提到的那样)。
要理解它们之间的区别,你必须理解梯度下降算法及其变体。
在我开始回答这个问题之前,我想先了解一下背景。
批处理是完整的数据集。它的大小是可用数据集中训练示例的总数。
小批量大小是学习算法在单次传递(向前和向后)中处理的示例数量。
迷你批是给定迷你批大小的数据集的一小部分。
迭代是算法已经看到的数据批次的数量(或者简单地说,算法已经在数据集上完成的次数)。
epoch是一个学习算法看到完整数据集的次数。现在,这可能不等于迭代的次数,因为数据集也可以小批量处理,本质上,一次传递可能只处理数据集的一部分。在这种情况下,迭代的数量不等于epoch的数量。
在批处理梯度下降的情况下,整个批处理在每个训练通过。因此,梯度下降优化器的收敛比Mini-batch梯度下降更平滑,但需要更多的时间。如果存在最优条件,分批梯度下降法保证能找到最优条件。
随机梯度下降是小批量梯度下降的一种特殊情况,其中小批量大小为1。
epoch是用于训练的样本子集的迭代,例如,神经网络中的梯度下降算法。一个很好的参考:http://neuralnetworksanddeeplearning.com/chap1.html
请注意,该页面有一个使用epoch的梯度下降算法的代码
def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The "training_data" is a list of tuples
"(x, y)" representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If "test_data" is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
if test_data: n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in xrange(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test_data), n_test)
else:
print "Epoch {0} complete".format(j)
看看代码。对于每个历元,我们随机生成梯度下降算法输入的子集。为什么epoch是有效的,也解释了这一页。请看一看。
通常,你会把你的测试集分成小批,让网络从中学习,并让训练在你的层数中一步一步地进行,一直应用梯度下降。所有这些小步骤都可以称为迭代。
一个epoch对应于整个训练集通过整个网络一次。限制这种情况是很有用的,例如对抗过拟合。
一个epoch包含几个迭代。这就是这个时代。让我们把epoch定义为训练神经网络时在数据集上的迭代次数。