训练多层感知器时,历元和迭代的区别是什么?
当前回答
一个epoch包含几个迭代。这就是这个时代。让我们把epoch定义为训练神经网络时在数据集上的迭代次数。
其他回答
epoch是用于训练的样本子集的迭代,例如,神经网络中的梯度下降算法。一个很好的参考:http://neuralnetworksanddeeplearning.com/chap1.html
请注意,该页面有一个使用epoch的梯度下降算法的代码
def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The "training_data" is a list of tuples
"(x, y)" representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If "test_data" is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
if test_data: n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in xrange(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test_data), n_test)
else:
print "Epoch {0} complete".format(j)
看看代码。对于每个历元,我们随机生成梯度下降算法输入的子集。为什么epoch是有效的,也解释了这一页。请看一看。
Epoch和iteration描述的是不同的东西。
时代
epoch描述了算法看到整个数据集的次数。因此,每当算法看到数据集中的所有样本时,就完成了一个epoch。
迭代
迭代描述了一批数据通过算法的次数。在神经网络的例子中,这意味着向前传递和向后传递。因此,每当你通过神经网络传递一批数据时,你就完成了一次迭代。
例子
举个例子可能会更清楚。
假设您有一个包含10个示例(或样本)的数据集。批处理大小为2,并指定算法运行3个epoch。
因此,在每个epoch中,您有5个批次(10/2 = 5)。每个批次都通过算法,因此每个epoch有5个迭代。 因为您已经指定了3个epoch,所以总共有15个迭代(5*3 = 15)用于训练。
Epoch is 1 complete cycle where the Neural network has seen all the data. One might have said 100,000 images to train the model, however, memory space might not be sufficient to process all the images at once, hence we split training the model on smaller chunks of data called batches. e.g. batch size is 100. We need to cover all the images using multiple batches. So we will need 1000 iterations to cover all the 100,000 images. (100 batch size * 1000 iterations) Once Neural Network looks at the entire data it is called 1 Epoch (Point 1). One might need multiple epochs to train the model. (let us say 10 epochs).
一个epoch包含几个迭代。这就是这个时代。让我们把epoch定义为训练神经网络时在数据集上的迭代次数。
通常,你会把你的测试集分成小批,让网络从中学习,并让训练在你的层数中一步一步地进行,一直应用梯度下降。所有这些小步骤都可以称为迭代。
一个epoch对应于整个训练集通过整个网络一次。限制这种情况是很有用的,例如对抗过拟合。
推荐文章
- 如何从scikit-learn决策树中提取决策规则?
- 数据挖掘中分类和聚类的区别?
- 主体、使用者和主体之间的意义和区别是什么?
- 什么是分片,为什么它很重要?
- 我在哪里调用Keras的BatchNormalization函数?
- 编程中的术语“上下文”?
- model.eval()在pytorch中做什么?
- 为什么binary_crossentropy和categorical_crossentropy对同一个问题给出不同的性能?
- 覆盖或覆盖
- 火灾vs. Webservice
- 为什么使用softmax而不是标准归一化?
- 为什么两个不同的概念都叫“堆”?
- 一般来说,应该选择哪种机器学习分类器?
- Keras,如何得到每一层的输出?
- 缓冲区是什么意思?