我一直相信,如果一个方法可以抛出异常,那么不使用有意义的try块来保护这个调用就是鲁莽的。

我刚刚发布了‘你应该总是包装调用,可以抛出try, catch块。,结果被告知这是一个“非常糟糕的建议”——我想知道为什么。


当前回答

我听到过的最好的建议是,您应该只在可以对异常条件采取措施的情况下捕获异常,而“捕获、记录和释放”并不是一个好策略(如果在库中偶尔不可避免的话)。

其他回答

正如在其他回答中所述,只有在可以对异常进行某种合理的错误处理时才应该捕获异常。

例如,在生成您的问题的问题中,提问者询问忽略从整数到字符串的lexical_cast异常是否安全。这样的阵容永远不会失败。如果它失败了,说明程序中出现了严重的错误。在这种情况下,你能做些什么来恢复呢?最好的方法可能是让程序死亡,因为它处于不可信任的状态。因此,不处理异常可能是最安全的做法。

方法应该只在能够以某种合理的方式处理异常时才捕获异常。

否则,将其向上传递,希望调用堆栈中更高位置的方法能够理解它。

正如其他人所注意到的,在调用堆栈的最高级别上使用一个未处理的异常处理程序(带有日志记录)是一种良好的实践,以确保记录任何致命错误。

尽管Mike Wheat的回答很好地总结了要点,但我还是觉得有必要再补充一个答案。我是这样想的。当你有方法做很多事情时,你是在增加复杂性,而不是增加它。

换句话说,封装在try catch中的方法有两种可能的结果。有非异常结果和异常结果。当你处理很多方法的时候这个指数级的爆炸超出了你的理解。

因为如果每个方法都以两种不同的方式分支,那么每次调用另一个方法时,你都是在对之前的潜在结果数进行平方。当你调用了5个方法时,你至少有256个可能的结果。与此相比,在每个方法中都不执行try/catch,您只有一条路径可以遵循。

我基本上就是这么看的。您可能会认为任何类型的分支都做同样的事情,但try/catch是一个特殊情况,因为应用程序的状态基本上是未定义的。

简而言之,try/catch使代码更难理解。

I was given the "opportunity" to salvage several projects and executives replaced the entire dev team because the app had too many errors and the users were tired of the problems and run-around. These code bases all had centralized error handling at the app level like the top voted answer describes. If that answer is the best practice why didn't it work and allow the previous dev team to resolve issues? Perhaps sometimes it doesn't work? The answers above don't mention how long devs spend fixing single issues. If time to resolve issues is the key metric, instrumenting code with try..catch blocks is a better practice.

How did my team fix the problems without significantly changing the UI? Simple, every method was instrumented with try..catch blocked and everything was logged at the point of failure with the method name, method parameters values concatenated into a string passed in along with the error message, the error message, app name, date, and version. With this information developers can run analytics on the errors to identify the exception that occurs the most! Or the namespace with the highest number of errors. It can also validate that an error that occurs in a module is properly handled and not caused by multiple reasons.

Another pro benefit of this is developers can set one break-point in the error logging method and with one break-point and a single click of the "step out" debug button, they are in the method that failed with full access to the actual objects at the point of failure, conveniently available in the immediate window. It makes it very easy to debug and allows dragging execution back to the start of the method to duplicate the problem to find the exact line. Does centralized exception handling allow a developer to replicate an exception in 30 seconds? No.

语句“方法只有在能够以某种合理的方式处理异常时才应该捕获异常。”这意味着开发人员可以预测或将遇到在发布之前可能发生的每一个错误。如果这是真的,那么应用程序异常处理程序就不需要了,Elastic Search和logstash也就没有市场了。

这种方法还可以让开发人员发现并修复生产中的间歇性问题!是否希望在生产环境中不使用调试器进行调试?或者你宁愿接那些心烦意乱的用户的电话和邮件?这可以让你在其他人知道之前解决问题,而不必通过电子邮件、即时通讯或Slack寻求支持,因为解决问题所需的一切都在那里。95%的问题永远不需要被复制。

为了正常工作,它需要与集中式日志记录相结合,该日志记录可以捕获名称空间/模块、类名、方法、输入和错误消息并存储在数据库中,以便可以聚合它以突出显示哪个方法失败最多,以便首先修复它。

有时候开发人员会选择从catch块向堆栈抛出异常,但这种方法比不抛出异常的普通代码慢100倍。优先使用日志记录进行捕获和释放。

在一家财富500强公司中,该技术被用于快速稳定一款每小时都会出现故障的应用,该应用是由12名开发者历时2年开发的。使用这3000个不同的异常在4个月内被识别、修复、测试和部署。这平均每15分钟修复一次,持续4个月。

我同意,输入所有需要的代码并不有趣,我更喜欢不看重复的代码,但从长远来看,为每个方法添加4行代码是值得的。

我的计算机科学教授曾经给我的建议是:“只有在使用标准方法无法处理错误时,才使用Try and Catch块。”

作为一个例子,他告诉我们,如果一个程序在一个地方遇到了一些严重的问题,而不可能做这样的事情:

int f()
{
    // Do stuff

    if (condition == false)
        return -1;
    return 0;
}

int condition = f();

if (f != 0)
{
    // handle error
}

然后你应该使用try, catch块。虽然您可以使用异常来处理这个问题,但通常不建议这样做,因为异常会消耗大量性能。