我有一个pandas数据框架,其中一列文本字符串包含逗号分隔的值。我想拆分每个CSV字段,并为每个条目创建一个新行(假设CSV是干净的,只需要在','上拆分)。例如,a应该变成b:

In [7]: a
Out[7]: 
    var1  var2
0  a,b,c     1
1  d,e,f     2

In [8]: b
Out[8]: 
  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5    f     2

到目前为止,我已经尝试了各种简单的函数,但是.apply方法在轴上使用时似乎只接受一行作为返回值,而且我不能让.transform工作。任何建议都将不胜感激!

示例数据:

from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
               {'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
               {'var1': 'b', 'var2': 1},
               {'var1': 'c', 'var2': 1},
               {'var1': 'd', 'var2': 2},
               {'var1': 'e', 'var2': 2},
               {'var1': 'f', 'var2': 2}])

我知道这不会起作用,因为我们通过numpy丢失了DataFrame元数据,但它应该给你一个我试图做的感觉:

def fun(row):
    letters = row['var1']
    letters = letters.split(',')
    out = np.array([row] * len(letters))
    out['var1'] = letters
a['idx'] = range(a.shape[0])
z = a.groupby('idx')
z.transform(fun)

当前回答

对于这个问题,我提出了以下解决方案:

def iter_var1(d):
    for _, row in d.iterrows():
        for v in row["var1"].split(","):
            yield (v, row["var2"])

new_a = DataFrame.from_records([i for i in iter_var1(a)],
        columns=["var1", "var2"])

其他回答

我很欣赏“常舍”的回答,真的,但是iterrows()函数在大型数据集上花费很长时间。我面对了这个问题,然后我走到了这一步。

# First, reset_index to make the index a column
a = a.reset_index().rename(columns={'index':'duplicated_idx'})

# Get a longer series with exploded cells to rows
series = pd.DataFrame(a['var1'].str.split('/')
                      .tolist(), index=a.duplicated_idx).stack()

# New df from series and merge with the old one
b = series.reset_index([0, 'duplicated_idx'])
b = b.rename(columns={0:'var1'})

# Optional & Advanced: In case, there are other columns apart from var1 & var2
b.merge(
    a[a.columns.difference(['var1'])],
    on='duplicated_idx')

# Optional: Delete the "duplicated_index"'s column, and reorder columns
b = b[a.columns.difference(['duplicated_idx'])]

这样怎么样:

In [55]: pd.concat([Series(row['var2'], row['var1'].split(','))              
                    for _, row in a.iterrows()]).reset_index()
Out[55]: 
  index  0
0     a  1
1     b  1
2     c  1
3     d  2
4     e  2
5     f  2

然后你只需要重命名列

基于优秀的@DMulligan的解决方案,这里有一个通用的向量化(无循环)函数,它将数据帧的一列分割成多行,并将其合并回原始数据帧。它还从这个答案中使用了一个很棒的通用change_column_order函数。

def change_column_order(df, col_name, index):
    cols = df.columns.tolist()
    cols.remove(col_name)
    cols.insert(index, col_name)
    return df[cols]

def split_df(dataframe, col_name, sep):
    orig_col_index = dataframe.columns.tolist().index(col_name)
    orig_index_name = dataframe.index.name
    orig_columns = dataframe.columns
    dataframe = dataframe.reset_index()  # we need a natural 0-based index for proper merge
    index_col_name = (set(dataframe.columns) - set(orig_columns)).pop()
    df_split = pd.DataFrame(
        pd.DataFrame(dataframe[col_name].str.split(sep).tolist())
        .stack().reset_index(level=1, drop=1), columns=[col_name])
    df = dataframe.drop(col_name, axis=1)
    df = pd.merge(df, df_split, left_index=True, right_index=True, how='inner')
    df = df.set_index(index_col_name)
    df.index.name = orig_index_name
    # merge adds the column to the last place, so we need to move it back
    return change_column_order(df, col_name, orig_col_index)

例子:

df = pd.DataFrame([['a:b', 1, 4], ['c:d', 2, 5], ['e:f:g:h', 3, 6]], 
                  columns=['Name', 'A', 'B'], index=[10, 12, 13])
df
        Name    A   B
    10   a:b     1   4
    12   c:d     2   5
    13   e:f:g:h 3   6

split_df(df, 'Name', ':')
    Name    A   B
10   a       1   4
10   b       1   4
12   c       2   5
12   d       2   5
13   e       3   6
13   f       3   6    
13   g       3   6    
13   h       3   6    

注意,它保留了列的原始索引和顺序。它也适用于具有非连续索引的数据框架。

一种使用.apply()改变列格式的简单方法,以便.explod()可以使用它:

import string
import pandas as pd
from io import StringIO

file = StringIO("""    var1  var2
0  a,b,c     1
1  d,e,f     2""")

df = pd.read_csv(file, sep=r'\s\s+')

df['var1'] = df['var1'].apply(lambda x : str(x).split(','))

df.explode('var1')

输出:

  var1  var2
0   a   1
0   b   1
0   c   1
1   d   2
1   e   2
1   f   2

这里有很多答案,但我很惊讶没有人提到内置的熊猫爆炸功能。看看下面的链接: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.explode.html#pandas.DataFrame.explode

由于某种原因,我无法访问该函数,所以我使用下面的代码:

import pandas_explode
pandas_explode.patch()
df_zlp_people_cnt3 = df_zlp_people_cnt2.explode('people')

以上是我的数据样本。如你所见,人物栏有一系列人物,我试图把它炸开。我给出的代码适用于列表类型数据。因此,请尝试将逗号分隔的文本数据转换为列表格式。此外,由于我的代码使用内置函数,它比自定义/应用函数快得多。

注意:你可能需要用pip安装pandas_explosion。