我有一个pandas数据框架,其中一列文本字符串包含逗号分隔的值。我想拆分每个CSV字段,并为每个条目创建一个新行(假设CSV是干净的,只需要在','上拆分)。例如,a应该变成b:

In [7]: a
Out[7]: 
    var1  var2
0  a,b,c     1
1  d,e,f     2

In [8]: b
Out[8]: 
  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5    f     2

到目前为止,我已经尝试了各种简单的函数,但是.apply方法在轴上使用时似乎只接受一行作为返回值,而且我不能让.transform工作。任何建议都将不胜感激!

示例数据:

from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
               {'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
               {'var1': 'b', 'var2': 1},
               {'var1': 'c', 'var2': 1},
               {'var1': 'd', 'var2': 2},
               {'var1': 'e', 'var2': 2},
               {'var1': 'f', 'var2': 2}])

我知道这不会起作用,因为我们通过numpy丢失了DataFrame元数据,但它应该给你一个我试图做的感觉:

def fun(row):
    letters = row['var1']
    letters = letters.split(',')
    out = np.array([row] * len(letters))
    out['var1'] = letters
a['idx'] = range(a.shape[0])
z = a.groupby('idx')
z.transform(fun)

当前回答

对于这个问题,我提出了以下解决方案:

def iter_var1(d):
    for _, row in d.iterrows():
        for v in row["var1"].split(","):
            yield (v, row["var2"])

new_a = DataFrame.from_records([i for i in iter_var1(a)],
        columns=["var1", "var2"])

其他回答

对于这个问题,我提出了以下解决方案:

def iter_var1(d):
    for _, row in d.iterrows():
        for v in row["var1"].split(","):
            yield (v, row["var2"])

new_a = DataFrame.from_records([i for i in iter_var1(a)],
        columns=["var1", "var2"])

经过痛苦的实验,我找到了比公认的答案更快的方法,我让这个方法起作用了。它在我试用的数据集上运行速度快了大约100倍。

如果有人知道如何使其更优雅,请务必修改我的代码。我找不到一种方法,不设置其他你想保留的列作为下标,然后重设下标,重命名列,但我想还有其他方法可以。

b = DataFrame(a.var1.str.split(',').tolist(), index=a.var2).stack()
b = b.reset_index()[[0, 'var2']] # var1 variable is currently labeled 0
b.columns = ['var1', 'var2'] # renaming var1

另一种解决方案是使用python复制包

import copy
new_observations = list()
def pandas_explode(df, column_to_explode):
    new_observations = list()
    for row in df.to_dict(orient='records'):
        explode_values = row[column_to_explode]
        del row[column_to_explode]
        if type(explode_values) is list or type(explode_values) is tuple:
            for explode_value in explode_values:
                new_observation = copy.deepcopy(row)
                new_observation[column_to_explode] = explode_value
                new_observations.append(new_observation) 
        else:
            new_observation = copy.deepcopy(row)
            new_observation[column_to_explode] = explode_values
            new_observations.append(new_observation) 
    return_df = pd.DataFrame(new_observations)
    return return_df

df = pandas_explode(df, column_name)

有可能在不改变数据框架结构的情况下拆分和爆炸数据框架

拆分和展开特定列的数据

输入:

    var1    var2
0   a,b,c   1
1   d,e,f   2



#Get the indexes which are repetative with the split 
df['var1'] = df['var1'].str.split(',')
df = df.explode('var1')

Out:

    var1    var2
0   a   1
0   b   1
0   c   1
1   d   2
1   e   2
1   f   2

Edit-1

对多列的行进行拆分和展开

Filename    RGB                                             RGB_type
0   A   [[0, 1650, 6, 39], [0, 1691, 1, 59], [50, 1402...   [r, g, b]
1   B   [[0, 1423, 16, 38], [0, 1445, 16, 46], [0, 141...   [r, g, b]

基于参考列重新索引,并将列值信息与堆栈对齐

df = df.reindex(df.index.repeat(df['RGB_type'].apply(len)))
df = df.groupby('Filename').apply(lambda x:x.apply(lambda y: pd.Series(y.iloc[0])))
df.reset_index(drop=True).ffill()

Out:

                Filename    RGB_type    Top 1 colour    Top 1 frequency Top 2 colour    Top 2 frequency
    Filename                            
 A  0       A   r   0   1650    6   39
    1       A   g   0   1691    1   59
    2       A   b   50  1402    49  187
 B  0       B   r   0   1423    16  38
    1       B   g   0   1445    16  46
    2       B   b   0   1419    16  39

类似的问题:pandas:如何将一列中的文本拆分为多行?

你可以这样做:

>> a=pd.DataFrame({"var1":"a,b,c d,e,f".split(),"var2":[1,2]})
>> s = a.var1.str.split(",").apply(pd.Series, 1).stack()
>> s.index = s.index.droplevel(-1)
>> del a['var1']
>> a.join(s)
   var2 var1
0     1    a
0     1    b
0     1    c
1     2    d
1     2    e
1     2    f