我有一个pandas数据框架,其中一列文本字符串包含逗号分隔的值。我想拆分每个CSV字段,并为每个条目创建一个新行(假设CSV是干净的,只需要在','上拆分)。例如,a应该变成b:

In [7]: a
Out[7]: 
    var1  var2
0  a,b,c     1
1  d,e,f     2

In [8]: b
Out[8]: 
  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5    f     2

到目前为止,我已经尝试了各种简单的函数,但是.apply方法在轴上使用时似乎只接受一行作为返回值,而且我不能让.transform工作。任何建议都将不胜感激!

示例数据:

from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
               {'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
               {'var1': 'b', 'var2': 1},
               {'var1': 'c', 'var2': 1},
               {'var1': 'd', 'var2': 2},
               {'var1': 'e', 'var2': 2},
               {'var1': 'f', 'var2': 2}])

我知道这不会起作用,因为我们通过numpy丢失了DataFrame元数据,但它应该给你一个我试图做的感觉:

def fun(row):
    letters = row['var1']
    letters = letters.split(',')
    out = np.array([row] * len(letters))
    out['var1'] = letters
a['idx'] = range(a.shape[0])
z = a.groupby('idx')
z.transform(fun)

当前回答

升级了MaxU的答案,支持MultiIndex

def explode(df, lst_cols, fill_value='', preserve_index=False):
    """
    usage:
        In [134]: df
        Out[134]:
           aaa  myid        num          text
        0   10     1  [1, 2, 3]  [aa, bb, cc]
        1   11     2         []            []
        2   12     3     [1, 2]      [cc, dd]
        3   13     4         []            []

        In [135]: explode(df, ['num','text'], fill_value='')
        Out[135]:
           aaa  myid num text
        0   10     1   1   aa
        1   10     1   2   bb
        2   10     1   3   cc
        3   11     2
        4   12     3   1   cc
        5   12     3   2   dd
        6   13     4
    """
    # make sure `lst_cols` is list-alike
    if (lst_cols is not None
        and len(lst_cols) > 0
        and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
        lst_cols = [lst_cols]
    # all columns except `lst_cols`
    idx_cols = df.columns.difference(lst_cols)
    # calculate lengths of lists
    lens = df[lst_cols[0]].str.len()
    # preserve original index values    
    idx = np.repeat(df.index.values, lens)
    res = (pd.DataFrame({
                col:np.repeat(df[col].values, lens)
                for col in idx_cols},
                index=idx)
             .assign(**{col:np.concatenate(df.loc[lens>0, col].values)
                            for col in lst_cols}))
    # append those rows that have empty lists
    if (lens == 0).any():
        # at least one list in cells is empty
        res = (res.append(df.loc[lens==0, idx_cols], sort=False)
                  .fillna(fill_value))
    # revert the original index order
    res = res.sort_index()
    # reset index if requested
    if not preserve_index:        
        res = res.reset_index(drop=True)

    # if original index is MultiIndex build the dataframe from the multiindex
    # create "exploded" DF
    if isinstance(df.index, pd.MultiIndex):
        res = res.reindex(
            index=pd.MultiIndex.from_tuples(
                res.index,
                names=['number', 'color']
            )
    )
    return res

其他回答

我一直在与内存不足的经验作斗争,使用各种方法来爆炸我的列表,所以我准备了一些基准来帮助我决定哪些答案应该点赞。我测试了列表长度与列表数量的不同比例的五种场景。分享以下结果:

时间:(越少越好,点击查看大版)

内存使用峰值:(越少越好)

结论:

@MaxU的回答(更新2),code dename concatenate在几乎所有情况下都提供了最好的速度,同时保持peek内存使用低, 如果你需要用相对较小的列表处理大量的行,并且可以负担得起增加的峰值内存,请参阅@DMulligan的答案(代码堆栈), 接受的@Chang的答案适用于有几行但非常大的列表的数据帧。

所有细节(函数和基准测试代码)都在GitHub要点中。请注意,基准测试问题被简化了,不包括将字符串拆分到列表中——大多数解决方案都以类似的方式执行。

我的版本的解决方案添加到这个集合!: -)

# Original problem
from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
               {'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
               {'var1': 'b', 'var2': 1},
               {'var1': 'c', 'var2': 1},
               {'var1': 'd', 'var2': 2},
               {'var1': 'e', 'var2': 2},
               {'var1': 'f', 'var2': 2}])
### My solution
import pandas as pd
import functools
def expand_on_cols(df, fuse_cols, delim=","):
    def expand_on_col(df, fuse_col):
        col_order = df.columns
        df_expanded = pd.DataFrame(
            df.set_index([x for x in df.columns if x != fuse_col])[fuse_col]
            .apply(lambda x: x.split(delim))
            .explode()
        ).reset_index()
        return df_expanded[col_order]
    all_expanded = functools.reduce(expand_on_col, fuse_cols, df)
    return all_expanded

assert(b.equals(expand_on_cols(a, ["var1"], delim=",")))

熊猫>= 0.25

Series和DataFrame方法定义了. explosion()方法,该方法将列表分解为单独的行。请参阅文档部分关于分解一个类似列表的列。

因为您有一个由逗号分隔的字符串列表,用逗号分隔字符串以获得元素列表,然后在该列上调用explosion。

df = pd.DataFrame({'var1': ['a,b,c', 'd,e,f'], 'var2': [1, 2]})
df
    var1  var2
0  a,b,c     1
1  d,e,f     2

df.assign(var1=df['var1'].str.split(',')).explode('var1')

  var1  var2
0    a     1
0    b     1
0    c     1
1    d     2
1    e     2
1    f     2

注意,爆炸只对单列有效(目前)。要同时爆炸多个列,请参见下面。

nan和空列表得到了他们应得的待遇,而不需要你跳圈来得到正确的。

df = pd.DataFrame({'var1': ['d,e,f', '', np.nan], 'var2': [1, 2, 3]})
df
    var1  var2
0  d,e,f     1
1            2
2    NaN     3

df['var1'].str.split(',')

0    [d, e, f]
1           []
2          NaN

df.assign(var1=df['var1'].str.split(',')).explode('var1')

  var1  var2
0    d     1
0    e     1
0    f     1
1          2  # empty list entry becomes empty string after exploding 
2  NaN     3  # NaN left un-touched

这相对于基于ravel/repeat的解决方案(后者完全忽略空列表,并阻塞在nan上)是一个很大的优势。


多列爆炸

熊猫1.3更新

df。从pandas 1.3开始,explosion在多个列上工作:

df = pd.DataFrame({'var1': ['a,b,c', 'd,e,f'], 
                   'var2': ['i,j,k', 'l,m,n'], 
                   'var3': [1, 2]})
df
    var1   var2  var3
0  a,b,c  i,j,k     1
1  d,e,f  l,m,n     2

(df.set_index(['var3']) 
       .apply(lambda col: col.str.split(','))
       .explode(['var1', 'var2'])
       .reset_index()
       .reindex(df.columns, axis=1))

  var1 var2  var3
0    a    i     1
1    b    j     1
2    c    k     1
3    d    l     2
4    e    m     2
5    f    n     2

在旧版本中,你会将爆炸列移动到应用程序内部,这是一个性能差得多的应用程序:

(df.set_index(['var3']) 
   .apply(lambda col: col.str.split(',').explode())
   .reset_index()
   .reindex(df.columns, axis=1))

其思想是将所有不应该被分解的列设置为索引,然后通过apply分解剩余的列。当列表大小相等时,这种方法效果很好。

这是一个相当直接的消息,它使用pandas str访问器的split方法,然后使用NumPy将每一行平铺成一个数组。

通过使用np.repeat以正确的次数重复未分割的列来检索相应的值。

var1 = df.var1.str.split(',', expand=True).values.ravel()
var2 = np.repeat(df.var2.values, len(var1) / len(df))

pd.DataFrame({'var1': var1,
              'var2': var2})

  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5    f     2

Try:

vals = np.array(a.var1.str.split(",").values.tolist())    
var = np.repeat(a.var2, vals.shape[1])

out = pd.DataFrame(np.column_stack((var, vals.ravel())), columns=a.columns)
display(out)

      var1 var2
    0   1   a
    1   1   b
    2   1   c
    3   2   d
    4   2   e
    5   2   f