我有一个pandas数据框架,其中一列文本字符串包含逗号分隔的值。我想拆分每个CSV字段,并为每个条目创建一个新行(假设CSV是干净的,只需要在','上拆分)。例如,a应该变成b:
In [7]: a
Out[7]:
var1 var2
0 a,b,c 1
1 d,e,f 2
In [8]: b
Out[8]:
var1 var2
0 a 1
1 b 1
2 c 1
3 d 2
4 e 2
5 f 2
到目前为止,我已经尝试了各种简单的函数,但是.apply方法在轴上使用时似乎只接受一行作为返回值,而且我不能让.transform工作。任何建议都将不胜感激!
示例数据:
from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
{'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
{'var1': 'b', 'var2': 1},
{'var1': 'c', 'var2': 1},
{'var1': 'd', 'var2': 2},
{'var1': 'e', 'var2': 2},
{'var1': 'f', 'var2': 2}])
我知道这不会起作用,因为我们通过numpy丢失了DataFrame元数据,但它应该给你一个我试图做的感觉:
def fun(row):
letters = row['var1']
letters = letters.split(',')
out = np.array([row] * len(letters))
out['var1'] = letters
a['idx'] = range(a.shape[0])
z = a.groupby('idx')
z.transform(fun)
升级了MaxU的答案,支持MultiIndex
def explode(df, lst_cols, fill_value='', preserve_index=False):
"""
usage:
In [134]: df
Out[134]:
aaa myid num text
0 10 1 [1, 2, 3] [aa, bb, cc]
1 11 2 [] []
2 12 3 [1, 2] [cc, dd]
3 13 4 [] []
In [135]: explode(df, ['num','text'], fill_value='')
Out[135]:
aaa myid num text
0 10 1 1 aa
1 10 1 2 bb
2 10 1 3 cc
3 11 2
4 12 3 1 cc
5 12 3 2 dd
6 13 4
"""
# make sure `lst_cols` is list-alike
if (lst_cols is not None
and len(lst_cols) > 0
and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
lst_cols = [lst_cols]
# all columns except `lst_cols`
idx_cols = df.columns.difference(lst_cols)
# calculate lengths of lists
lens = df[lst_cols[0]].str.len()
# preserve original index values
idx = np.repeat(df.index.values, lens)
res = (pd.DataFrame({
col:np.repeat(df[col].values, lens)
for col in idx_cols},
index=idx)
.assign(**{col:np.concatenate(df.loc[lens>0, col].values)
for col in lst_cols}))
# append those rows that have empty lists
if (lens == 0).any():
# at least one list in cells is empty
res = (res.append(df.loc[lens==0, idx_cols], sort=False)
.fillna(fill_value))
# revert the original index order
res = res.sort_index()
# reset index if requested
if not preserve_index:
res = res.reset_index(drop=True)
# if original index is MultiIndex build the dataframe from the multiindex
# create "exploded" DF
if isinstance(df.index, pd.MultiIndex):
res = res.reindex(
index=pd.MultiIndex.from_tuples(
res.index,
names=['number', 'color']
)
)
return res
我有一个类似的问题,我的解决方案是将数据帧转换为字典列表,然后进行转换。函数如下:
import re
import pandas as pd
def separate_row(df, column_name):
ls = []
for row_dict in df.to_dict('records'):
for word in re.split(',', row_dict[column_name]):
row = row_dict.copy()
row[column_name]=word
ls.append(row)
return pd.DataFrame(ls)
例子:
>>> from pandas import DataFrame
>>> import numpy as np
>>> a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
{'var1': 'd,e,f', 'var2': 2}])
>>> a
var1 var2
0 a,b,c 1
1 d,e,f 2
>>> separate_row(a, "var1")
var1 var2
0 a 1
1 b 1
2 c 1
3 d 2
4 e 2
5 f 2
您还可以稍微更改该函数以支持分离列表类型行。
我的版本的解决方案添加到这个集合!: -)
# Original problem
from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
{'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
{'var1': 'b', 'var2': 1},
{'var1': 'c', 'var2': 1},
{'var1': 'd', 'var2': 2},
{'var1': 'e', 'var2': 2},
{'var1': 'f', 'var2': 2}])
### My solution
import pandas as pd
import functools
def expand_on_cols(df, fuse_cols, delim=","):
def expand_on_col(df, fuse_col):
col_order = df.columns
df_expanded = pd.DataFrame(
df.set_index([x for x in df.columns if x != fuse_col])[fuse_col]
.apply(lambda x: x.split(delim))
.explode()
).reset_index()
return df_expanded[col_order]
all_expanded = functools.reduce(expand_on_col, fuse_cols, df)
return all_expanded
assert(b.equals(expand_on_cols(a, ["var1"], delim=",")))
基于优秀的@DMulligan的解决方案,这里有一个通用的向量化(无循环)函数,它将数据帧的一列分割成多行,并将其合并回原始数据帧。它还从这个答案中使用了一个很棒的通用change_column_order函数。
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
def split_df(dataframe, col_name, sep):
orig_col_index = dataframe.columns.tolist().index(col_name)
orig_index_name = dataframe.index.name
orig_columns = dataframe.columns
dataframe = dataframe.reset_index() # we need a natural 0-based index for proper merge
index_col_name = (set(dataframe.columns) - set(orig_columns)).pop()
df_split = pd.DataFrame(
pd.DataFrame(dataframe[col_name].str.split(sep).tolist())
.stack().reset_index(level=1, drop=1), columns=[col_name])
df = dataframe.drop(col_name, axis=1)
df = pd.merge(df, df_split, left_index=True, right_index=True, how='inner')
df = df.set_index(index_col_name)
df.index.name = orig_index_name
# merge adds the column to the last place, so we need to move it back
return change_column_order(df, col_name, orig_col_index)
例子:
df = pd.DataFrame([['a:b', 1, 4], ['c:d', 2, 5], ['e:f:g:h', 3, 6]],
columns=['Name', 'A', 'B'], index=[10, 12, 13])
df
Name A B
10 a:b 1 4
12 c:d 2 5
13 e:f:g:h 3 6
split_df(df, 'Name', ':')
Name A B
10 a 1 4
10 b 1 4
12 c 2 5
12 d 2 5
13 e 3 6
13 f 3 6
13 g 3 6
13 h 3 6
注意,它保留了列的原始索引和顺序。它也适用于具有非连续索引的数据框架。