我有一个pandas数据框架,其中一列文本字符串包含逗号分隔的值。我想拆分每个CSV字段,并为每个条目创建一个新行(假设CSV是干净的,只需要在','上拆分)。例如,a应该变成b:

In [7]: a
Out[7]: 
    var1  var2
0  a,b,c     1
1  d,e,f     2

In [8]: b
Out[8]: 
  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5    f     2

到目前为止,我已经尝试了各种简单的函数,但是.apply方法在轴上使用时似乎只接受一行作为返回值,而且我不能让.transform工作。任何建议都将不胜感激!

示例数据:

from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
               {'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
               {'var1': 'b', 'var2': 1},
               {'var1': 'c', 'var2': 1},
               {'var1': 'd', 'var2': 2},
               {'var1': 'e', 'var2': 2},
               {'var1': 'f', 'var2': 2}])

我知道这不会起作用,因为我们通过numpy丢失了DataFrame元数据,但它应该给你一个我试图做的感觉:

def fun(row):
    letters = row['var1']
    letters = letters.split(',')
    out = np.array([row] * len(letters))
    out['var1'] = letters
a['idx'] = range(a.shape[0])
z = a.groupby('idx')
z.transform(fun)

当前回答

在添加了这个页面上所有解决方案中的一些零碎内容后,我能够得到这样的东西(对于需要立即使用它的人来说)。 函数的参数是df(输入数据帧)和key(用分隔符分隔字符串的列)。如果分隔符与分号“;”不同,只需替换为分隔符。

def split_df_rows_for_semicolon_separated_key(key, df):
    df=df.set_index(df.columns.drop(key,1).tolist())[key].str.split(';', expand=True).stack().reset_index().rename(columns={0:key}).loc[:, df.columns]
    df=df[df[key] != '']
    return df

其他回答

我一直在与内存不足的经验作斗争,使用各种方法来爆炸我的列表,所以我准备了一些基准来帮助我决定哪些答案应该点赞。我测试了列表长度与列表数量的不同比例的五种场景。分享以下结果:

时间:(越少越好,点击查看大版)

内存使用峰值:(越少越好)

结论:

@MaxU的回答(更新2),code dename concatenate在几乎所有情况下都提供了最好的速度,同时保持peek内存使用低, 如果你需要用相对较小的列表处理大量的行,并且可以负担得起增加的峰值内存,请参阅@DMulligan的答案(代码堆栈), 接受的@Chang的答案适用于有几行但非常大的列表的数据帧。

所有细节(函数和基准测试代码)都在GitHub要点中。请注意,基准测试问题被简化了,不包括将字符串拆分到列表中——大多数解决方案都以类似的方式执行。

经过痛苦的实验,我找到了比公认的答案更快的方法,我让这个方法起作用了。它在我试用的数据集上运行速度快了大约100倍。

如果有人知道如何使其更优雅,请务必修改我的代码。我找不到一种方法,不设置其他你想保留的列作为下标,然后重设下标,重命名列,但我想还有其他方法可以。

b = DataFrame(a.var1.str.split(',').tolist(), index=a.var2).stack()
b = b.reset_index()[[0, 'var2']] # var1 variable is currently labeled 0
b.columns = ['var1', 'var2'] # renaming var1

升级了MaxU的答案,支持MultiIndex

def explode(df, lst_cols, fill_value='', preserve_index=False):
    """
    usage:
        In [134]: df
        Out[134]:
           aaa  myid        num          text
        0   10     1  [1, 2, 3]  [aa, bb, cc]
        1   11     2         []            []
        2   12     3     [1, 2]      [cc, dd]
        3   13     4         []            []

        In [135]: explode(df, ['num','text'], fill_value='')
        Out[135]:
           aaa  myid num text
        0   10     1   1   aa
        1   10     1   2   bb
        2   10     1   3   cc
        3   11     2
        4   12     3   1   cc
        5   12     3   2   dd
        6   13     4
    """
    # make sure `lst_cols` is list-alike
    if (lst_cols is not None
        and len(lst_cols) > 0
        and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
        lst_cols = [lst_cols]
    # all columns except `lst_cols`
    idx_cols = df.columns.difference(lst_cols)
    # calculate lengths of lists
    lens = df[lst_cols[0]].str.len()
    # preserve original index values    
    idx = np.repeat(df.index.values, lens)
    res = (pd.DataFrame({
                col:np.repeat(df[col].values, lens)
                for col in idx_cols},
                index=idx)
             .assign(**{col:np.concatenate(df.loc[lens>0, col].values)
                            for col in lst_cols}))
    # append those rows that have empty lists
    if (lens == 0).any():
        # at least one list in cells is empty
        res = (res.append(df.loc[lens==0, idx_cols], sort=False)
                  .fillna(fill_value))
    # revert the original index order
    res = res.sort_index()
    # reset index if requested
    if not preserve_index:        
        res = res.reset_index(drop=True)

    # if original index is MultiIndex build the dataframe from the multiindex
    # create "exploded" DF
    if isinstance(df.index, pd.MultiIndex):
        res = res.reindex(
            index=pd.MultiIndex.from_tuples(
                res.index,
                names=['number', 'color']
            )
    )
    return res

这样怎么样:

In [55]: pd.concat([Series(row['var2'], row['var1'].split(','))              
                    for _, row in a.iterrows()]).reset_index()
Out[55]: 
  index  0
0     a  1
1     b  1
2     c  1
3     d  2
4     e  2
5     f  2

然后你只需要重命名列

字符串函数split可以接受一个选项布尔参数“expand”。

下面是使用这个论点的解决方案:

(a.var1
  .str.split(",",expand=True)
  .set_index(a.var2)
  .stack()
  .reset_index(level=1, drop=True)
  .reset_index()
  .rename(columns={0:"var1"}))