任何人只要长时间摆弄Python,都会被以下问题所困扰(或撕成碎片):
def foo(a=[]):
a.append(5)
return a
Python新手希望这个没有参数的函数总是返回一个只有一个元素的列表:[5]。结果却非常不同,非常令人惊讶(对于新手来说):
>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()
我的一位经理曾第一次接触到这个功能,并称其为语言的“戏剧性设计缺陷”。我回答说,这种行为有一个潜在的解释,如果你不了解其内部,这确实非常令人困惑和意外。然而,我无法(对自己)回答以下问题:在函数定义时而不是在函数执行时绑定默认参数的原因是什么?我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)
编辑:
Baczek举了一个有趣的例子。连同您的大多数评论,特别是Utaal的评论,我进一步阐述了:
>>> def a():
... print("a executed")
... return []
...
>>>
>>> def b(x=a()):
... x.append(5)
... print(x)
...
a executed
>>> b()
[5]
>>> b()
[5, 5]
在我看来,设计决策似乎与将参数范围放在哪里有关:放在函数内部,还是与函数“一起”?
在函数内部进行绑定意味着当函数被调用而不是被定义时,x被有效地绑定到指定的默认值,这将带来一个严重的缺陷:def行将是“混合”的,即部分绑定(函数对象)将在定义时发生,部分绑定(默认参数的赋值)将在函数调用时发生。
实际行为更加一致:当执行该行时,该行的所有内容都会得到求值,这意味着在函数定义时。
Python:可变默认参数
将函数编译为函数对象时,将计算默认参数。当被该函数多次使用时,它们仍然是同一个对象。
当它们是可变的时,当它们发生突变时(例如,通过向其中添加元素),它们在连续调用时保持突变。
它们保持变异,因为它们每次都是同一个物体。
等效代码:
由于在编译和实例化函数对象时列表绑定到函数,因此:
def foo(mutable_default_argument=[]): # make a list the default argument
"""function that uses a list"""
几乎完全等同于此:
_a_list = [] # create a list in the globals
def foo(mutable_default_argument=_a_list): # make it the default argument
"""function that uses a list"""
del _a_list # remove globals name binding
集会示威
这里有一个演示-您可以验证每次引用它们时它们都是相同的对象
看到列表是在函数完成编译到函数对象之前创建的,观察到每次引用列表时id都是相同的,观察到当第二次调用使用该列表的函数时该列表保持改变,观察从源打印输出的顺序(我方便地为您编号):
示例.py
print('1. Global scope being evaluated')
def create_list():
'''noisily create a list for usage as a kwarg'''
l = []
print('3. list being created and returned, id: ' + str(id(l)))
return l
print('2. example_function about to be compiled to an object')
def example_function(default_kwarg1=create_list()):
print('appending "a" in default default_kwarg1')
default_kwarg1.append("a")
print('list with id: ' + str(id(default_kwarg1)) +
' - is now: ' + repr(default_kwarg1))
print('4. example_function compiled: ' + repr(example_function))
if __name__ == '__main__':
print('5. calling example_function twice!:')
example_function()
example_function()
并使用python example.py运行它:
1. Global scope being evaluated
2. example_function about to be compiled to an object
3. list being created and returned, id: 140502758808032
4. example_function compiled: <function example_function at 0x7fc9590905f0>
5. calling example_function twice!:
appending "a" in default default_kwarg1
list with id: 140502758808032 - is now: ['a']
appending "a" in default default_kwarg1
list with id: 140502758808032 - is now: ['a', 'a']
这是否违反了“最少惊讶”的原则?
这种执行顺序经常让Python的新用户感到困惑。如果您了解Python执行模型,那么它将变得非常令人期待。
对Python新用户的常规说明:
但这就是为什么对新用户的通常指示是创建默认参数,如下所示:
def example_function_2(default_kwarg=None):
if default_kwarg is None:
default_kwarg = []
这使用None单例作为一个sentinel对象来告诉函数我们是否得到了默认值以外的参数。如果没有参数,那么我们实际上希望使用新的空列表[]作为默认值。
正如关于控制流的教程部分所说:
如果您不希望在后续调用之间共享默认值,您可以改为这样编写函数:定义f(a,L=无):如果L为无:L=[]L.附加(a)返回L
假设您有以下代码
fruits = ("apples", "bananas", "loganberries")
def eat(food=fruits):
...
当我看到eat的声明时,最不令人惊讶的是,如果没有给定第一个参数,它将等于元组(“apples”、“banans”、“loganberries”)
然而,假设稍后在代码中
def some_random_function():
global fruits
fruits = ("blueberries", "mangos")
那么,如果默认参数是在函数执行时绑定的,而不是在函数声明时绑定的话,我会惊讶地发现(以一种非常糟糕的方式)水果已经被更改了。这将比发现上面的foo函数正在改变列表更让IMO惊讶。
真正的问题在于可变变量,所有语言在某种程度上都存在这个问题。这里有一个问题:假设在Java中我有以下代码:
StringBuffer s = new StringBuffer("Hello World!");
Map<StringBuffer,Integer> counts = new HashMap<StringBuffer,Integer>();
counts.put(s, 5);
s.append("!!!!");
System.out.println( counts.get(s) ); // does this work?
现在,我的映射是使用StringBuffer键在放置到映射中时的值,还是通过引用存储该键?不管怎样,都有人感到惊讶;或者是试图使用与放入对象的值相同的值将对象从Map中取出的人,或者是即使他们使用的键实际上与用于将其放入映射中的对象相同,但似乎无法检索对象的人(这实际上就是Python不允许将其可变内置数据类型用作字典键的原因)。
你的例子是一个很好的例子,Python新手会感到惊讶和被咬。但我认为,如果我们“修复”了这一点,那么这只会造成一种不同的情况,即它们会被咬,而且这种情况会更不直观。此外,在处理可变变量时总是如此;你总是会遇到这样的情况:根据编写的代码,某人可能会直觉地期望一种或相反的行为。
我个人喜欢Python当前的方法:在定义函数时计算默认函数参数,并且该对象始终是默认值。我想他们可以使用空列表进行特殊情况处理,但这种特殊情况会引起更大的惊讶,更不用说向后不兼容了。
我将演示一种将默认列表值传递给函数的替代结构(它与字典同样适用)。
正如其他人广泛评论的那样,列表参数在定义时绑定到函数,而不是在执行时。由于列表和字典是可变的,因此对该参数的任何更改都将影响对该函数的其他调用。因此,对函数的后续调用将接收此共享列表,该列表可能已被对函数的任何其他调用更改。更糟糕的是,两个参数同时使用该函数的共享参数,而忽略了另一个参数所做的更改。
错误的方法(可能…):
def foo(list_arg=[5]):
return list_arg
a = foo()
a.append(6)
>>> a
[5, 6]
b = foo()
b.append(7)
# The value of 6 appended to variable 'a' is now part of the list held by 'b'.
>>> b
[5, 6, 7]
# Although 'a' is expecting to receive 6 (the last element it appended to the list),
# it actually receives the last element appended to the shared list.
# It thus receives the value 7 previously appended by 'b'.
>>> a.pop()
7
您可以使用id:
>>> id(a)
5347866528
>>> id(b)
5347866528
根据Brett Slatkin的《有效的Python:59种编写更好Python的具体方法》,第20项:使用None和Docstring指定动态默认参数(第48页)
在Python中实现所需结果的惯例是提供默认值None,并记录实际行为在docstring中。
此实现确保对函数的每个调用都接收默认列表或传递给函数的列表。
首选方法:
def foo(list_arg=None):
"""
:param list_arg: A list of input values.
If none provided, used a list with a default value of 5.
"""
if not list_arg:
list_arg = [5]
return list_arg
a = foo()
a.append(6)
>>> a
[5, 6]
b = foo()
b.append(7)
>>> b
[5, 7]
c = foo([10])
c.append(11)
>>> c
[10, 11]
“错误方法”可能有合法的用例,程序员希望共享默认列表参数,但这更可能是例外而不是规则。
是的,这是Python中的一个设计缺陷
我看过所有其他答案,但我不相信。这种设计确实违反了最小惊讶的原则。
默认值可以设计为在调用函数时计算,而不是在定义函数时计算。Javascript是这样做的:
函数foo(a=[]){a.推动(5);返回a;}console.log(foo());//[5]console.log(foo());//[5]console.log(foo());//[5]
作为进一步证明这是一个设计缺陷的证据,Python核心开发人员目前正在讨论引入新语法来解决这个问题。请参阅本文:Python的后期绑定参数默认值。
为了进一步证明这是一个设计缺陷,如果你搜索“Python gotchas”,这个设计被称为gotcha,通常是列表中的第一个gotcha,在前9个Google结果(1、2、3、4、5、6、7、8、9)中。相反,如果你搜索“Javascript gotchas”,Javascript中默认参数的行为甚至一次都没有被提到过。
根据定义,Gotchas违反了最小惊讶的原则。它们令人惊讶。鉴于默认参数值的行为有着更高级的设计,不可避免的结论是Python的行为在这里代表了一个设计缺陷。
这是一种性能优化。由于此功能,您认为这两个函数调用中哪一个更快?
def print_tuple(some_tuple=(1,2,3)):
print some_tuple
print_tuple() #1
print_tuple((1,2,3)) #2
我会给你一个提示。这是拆卸(参见http://docs.python.org/library/dis.html):
#1
0 LOAD_GLOBAL 0 (print_tuple)
3 CALL_FUNCTION 0
6 POP_TOP
7 LOAD_CONST 0 (None)
10 RETURN_VALUE
#2
0 LOAD_GLOBAL 0 (print_tuple)
3 LOAD_CONST 4 ((1, 2, 3))
6 CALL_FUNCTION 1
9 POP_TOP
10 LOAD_CONST 0 (None)
13 RETURN_VALUE
我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)
正如您所看到的,使用不可变的默认参数会带来性能上的好处。如果它是一个频繁调用的函数,或者默认参数需要很长时间才能构造,那么这可能会有所不同。此外,请记住Python不是C。在C中,您可以使用非常免费的常量。在Python中,你没有这个好处。
每个其他的答案都解释了为什么这实际上是一个好的和期望的行为,或者为什么你无论如何都不需要这个。我是为那些顽固的人准备的,他们想行使自己的权利,让语言服从自己的意愿,而不是相反。
我们将使用一个装饰器来“修复”这个行为,该装饰器将复制默认值,而不是为保留在默认值的每个位置参数重复使用相同的实例。
import inspect
from copy import deepcopy # copy would fail on deep arguments like nested dicts
def sanify(function):
def wrapper(*a, **kw):
# store the default values
defaults = inspect.getargspec(function).defaults # for python2
# construct a new argument list
new_args = []
for i, arg in enumerate(defaults):
# allow passing positional arguments
if i in range(len(a)):
new_args.append(a[i])
else:
# copy the value
new_args.append(deepcopy(arg))
return function(*new_args, **kw)
return wrapper
现在让我们使用这个装饰器重新定义我们的函数:
@sanify
def foo(a=[]):
a.append(5)
return a
foo() # '[5]'
foo() # '[5]' -- as desired
对于具有多个参数的函数来说,这一点尤为简洁。比较:
# the 'correct' approach
def bar(a=None, b=None, c=None):
if a is None:
a = []
if b is None:
b = []
if c is None:
c = []
# finally do the actual work
with
# the nasty decorator hack
@sanify
def bar(a=[], b=[], c=[]):
# wow, works right out of the box!
需要注意的是,如果您尝试使用关键字args,则上述解决方案会中断,如下所示:
foo(a=[4])
可以调整装饰器以允许这一点,但我们将此作为读者的练习;)