如何在Python中创建类(即静态)变量或方法?


当前回答

@数据类定义提供用于定义实例变量和初始化方法__init__()的类级名称。如果要在@dataclass中使用类级变量,则应使用typeing.ClassVar类型提示。ClassVar类型的参数定义类级别变量的类型。

from typing import ClassVar
from dataclasses import dataclass

@dataclass
class Test:
    i: ClassVar[int] = 10
    x: int
    y: int
    
    def __repr__(self):
        return f"Test({self.x=}, {self.y=}, {Test.i=})"

用法示例:

> test1 = Test(5, 6)
> test2 = Test(10, 11)

> test1
Test(self.x=5, self.y=6, Test.i=10)
> test2
Test(self.x=10, self.y=11, Test.i=10)

其他回答

关于这个答案,对于常量静态变量,可以使用描述符。下面是一个示例:

class ConstantAttribute(object):
    '''You can initialize my value but not change it.'''
    def __init__(self, value):
        self.value = value

    def __get__(self, obj, type=None):
        return self.value

    def __set__(self, obj, val):
        pass


class Demo(object):
    x = ConstantAttribute(10)


class SubDemo(Demo):
    x = 10


demo = Demo()
subdemo = SubDemo()
# should not change
demo.x = 100
# should change
subdemo.x = 100
print "small demo", demo.x
print "small subdemo", subdemo.x
print "big demo", Demo.x
print "big subdemo", SubDemo.x

导致。。。

small demo 10
small subdemo 100
big demo 10
big subdemo 10

如果您不喜欢忽略设置值(上面的传递),您总是可以引发异常。如果您正在寻找C++、Java风格的静态类变量:

class StaticAttribute(object):
    def __init__(self, value):
        self.value = value

    def __get__(self, obj, type=None):
        return self.value

    def __set__(self, obj, val):
        self.value = val

请查看此答案和HOWTO官方文件,以了解有关描述符的更多信息。

在类定义中声明但不在方法中声明的变量是类或静态变量:

>>> class MyClass:
...     i = 3
...
>>> MyClass.i
3 

正如@millerdev所指出的,这会创建一个类级别i变量,但这与任何实例级别i变量都不同,因此您可以

>>> m = MyClass()
>>> m.i = 4
>>> MyClass.i, m.i
>>> (3, 4)

这与C++和Java不同,但与C#没有太大区别,在C#中,不能使用对实例的引用来访问静态成员。

看看Python教程对类和类对象的主题有什么看法。

@Steve Johnson已经回答了静态方法的问题,也在Python库参考中的“内置函数”中进行了说明。

class C:
    @staticmethod
    def f(arg1, arg2, ...): ...

@beidy推荐classmethods而不是staticmethod,因为该方法随后会接收类类型作为第一个参数。

类变量并允许子类化

假设你不是在寻找一个真正的静态变量,而是一个类似于蟒蛇的东西,它可以为同意的成年人做同样的工作,那么就使用一个类变量。这将为您提供一个所有实例都可以访问(和更新)的变量

注意:其他许多使用类变量的答案都会破坏子类化。应避免直接按名称引用类。

from contextlib import contextmanager

class Sheldon(object):
    foo = 73

    def __init__(self, n):
        self.n = n

    def times(self):
        cls = self.__class__
        return cls.foo * self.n
        #self.foo * self.n would give the same result here but is less readable
        # it will also create a local variable which will make it easier to break your code
    
    def updatefoo(self):
        cls = self.__class__
        cls.foo *= self.n
        #self.foo *= self.n will not work here
        # assignment will try to create a instance variable foo

    @classmethod
    @contextmanager
    def reset_after_test(cls):
        originalfoo = cls.foo
        yield
        cls.foo = originalfoo
        #if you don't do this then running a full test suite will fail
        #updates to foo in one test will be kept for later tests

将为您提供与使用Sheldon.foo处理变量相同的功能,并将通过以下测试:

def test_times():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        assert s.times() == 146

def test_update():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s.updatefoo()
        assert Sheldon.foo == 146

def test_two_instances():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s3 = Sheldon(3)
        assert s.times() == 146
        assert s3.times() == 219
        s3.updatefoo()
        assert s.times() == 438

它还允许其他人简单地:

class Douglas(Sheldon):
    foo = 42

这也将起作用:

def test_subclassing():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84
        assert s.times() == 146
        d.updatefoo()
        assert d.times() == 168 #Douglas.Foo was updated
        assert s.times() == 146 #Seldon.Foo is still 73

def test_subclassing_reset():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84 #Douglas.foo was reset after the last test
        assert s.times() == 146 #and so was Sheldon.foo

有关创建课程时要注意的事项的最佳建议,请查看Raymond Hettinger的视频https://www.youtube.com/watch?v=HTLu2DFOdTg

@Blair Conrad表示,在类定义中声明的静态变量,而不是在方法中声明的是类或“静态”变量:

>>> class Test(object):
...     i = 3
...
>>> Test.i
3

这里有几家餐厅。从以上示例继续:

>>> t = Test()
>>> t.i     # "static" variable accessed via instance
3
>>> t.i = 5 # but if we assign to the instance ...
>>> Test.i  # we have not changed the "static" variable
3
>>> t.i     # we have overwritten Test.i on t by creating a new attribute t.i
5
>>> Test.i = 6 # to change the "static" variable we do it by assigning to the class
>>> t.i
5
>>> Test.i
6
>>> u = Test()
>>> u.i
6           # changes to t do not affect new instances of Test

# Namespaces are one honking great idea -- let's do more of those!
>>> Test.__dict__
{'i': 6, ...}
>>> t.__dict__
{'i': 5}
>>> u.__dict__
{}

请注意,当直接在t上设置属性i时,实例变量t.i如何与“static”类变量不同步。这是因为我在t命名空间中重新绑定,这与Test命名空间不同。如果要更改“静态”变量的值,必须在其最初定义的范围(或对象)内更改它。我把“static”放在引号里,因为Python实际上没有C++和Java那样的静态变量。

尽管Python教程没有具体说明静态变量或方法,但它提供了一些关于类和类对象的相关信息。

@Steve Johnson还回答了静态方法的问题,也在Python库参考中的“内置函数”中进行了记录。

class Test(object):
    @staticmethod
    def f(arg1, arg2, ...):
        ...

@beid还提到了classmethod,它类似于staticmethod。类方法的第一个参数是类对象。例子:

class Test(object):
    i = 3 # class (or static) variable
    @classmethod
    def g(cls, arg):
        # here we can use 'cls' instead of the class name (Test)
        if arg > cls.i:
            cls.i = arg # would be the same as Test.i = arg1

您可以使用列表或字典来获取实例之间的“静态行为”。

class Fud:

     class_vars = {'origin_open':False}

     def __init__(self, origin = True):
         self.origin = origin
         self.opened = True
         if origin:
             self.class_vars['origin_open'] = True


     def make_another_fud(self):
         ''' Generating another Fud() from the origin instance '''

         return Fud(False)


     def close(self):
         self.opened = False
         if self.origin:
             self.class_vars['origin_open'] = False


fud1 = Fud()
fud2 = fud1.make_another_fud()

print (f"is this the original fud: {fud2.origin}")
print (f"is the original fud open: {fud2.class_vars['origin_open']}")
# is this the original fud: False
# is the original fud open: True

fud1.close()

print (f"is the original fud open: {fud2.class_vars['origin_open']}")
# is the original fud open: False