如何在Python中创建类(即静态)变量或方法?


当前回答

使用Object数据类型是可能的。但是对于bool、int、float或str等原始类型,bahaviour与其他OOP语言不同。因为在继承类中不存在静态属性。若继承类中不存在该属性,Python将开始在父类中查找该属性。如果在父类中找到,将返回其值。当您决定更改继承类中的值时,将在运行时创建静态属性。在下一次读取继承的静态属性时,将返回其值,因为它已经定义。对象(列表、字典)用作引用,因此可以安全地将它们用作静态属性并继承它们。对象地址在更改其属性值时不会更改。

整数数据类型示例:

class A:
    static = 1


class B(A):
    pass


print(f"int {A.static}")  # get 1 correctly
print(f"int {B.static}")  # get 1 correctly

A.static = 5
print(f"int {A.static}")  # get 5 correctly
print(f"int {B.static}")  # get 5 correctly

B.static = 6
print(f"int {A.static}")  # expected 6, but get 5 incorrectly
print(f"int {B.static}")  # get 6 correctly

A.static = 7
print(f"int {A.static}")  # get 7 correctly
print(f"int {B.static}")  # get unchanged 6

基于refdatatypes库的解决方案:

from refdatatypes.refint import RefInt


class AAA:
    static = RefInt(1)


class BBB(AAA):
    pass


print(f"refint {AAA.static.value}")  # get 1 correctly
print(f"refint {BBB.static.value}")  # get 1 correctly

AAA.static.value = 5
print(f"refint {AAA.static.value}")  # get 5 correctly
print(f"refint {BBB.static.value}")  # get 5 correctly

BBB.static.value = 6
print(f"refint {AAA.static.value}")  # get 6 correctly
print(f"refint {BBB.static.value}")  # get 6 correctly

AAA.static.value = 7
print(f"refint {AAA.static.value}")  # get 7 correctly
print(f"refint {BBB.static.value}")  # get 7 correctly

其他回答

为了避免任何潜在的混淆,我想对比静态变量和不可变对象。

一些基本对象类型,如整数、浮点数、字符串和元组,在Python中是不可变的。这意味着由给定名称引用的对象如果属于上述对象类型之一,则不能更改。可以将名称重新分配给不同的对象,但不能更改对象本身。

通过禁止变量名指向除当前指向的对象之外的任何对象,使变量成为静态变量更进一步。(注意:这是一个通用的软件概念,并不特定于Python;请参阅其他人的帖子,了解有关在Python中实现静态的信息)。

关于Python的属性查找,一个非常有趣的点是它可以用来创建“虚拟变量”:

class A(object):

  label="Amazing"

  def __init__(self,d): 
      self.data=d

  def say(self): 
      print("%s %s!"%(self.label,self.data))

class B(A):
  label="Bold"  # overrides A.label

A(5).say()      # Amazing 5!
B(3).say()      # Bold 3!

通常情况下,在创建它们之后,不会有任何分配给它们。请注意,查找使用self,因为尽管标签在不与特定实例关联的意义上是静态的,但值仍然取决于(的类)实例。

您还可以向类动态添加类变量

>>> class X:
...     pass
... 
>>> X.bar = 0
>>> x = X()
>>> x.bar
0
>>> x.foo
Traceback (most recent call last):
  File "<interactive input>", line 1, in <module>
AttributeError: X instance has no attribute 'foo'
>>> X.foo = 1
>>> x.foo
1

类实例可以更改类变量

class X:
  l = []
  def __init__(self):
    self.l.append(1)

print X().l
print X().l

>python test.py
[1]
[1, 1]

关于这个答案,对于常量静态变量,可以使用描述符。下面是一个示例:

class ConstantAttribute(object):
    '''You can initialize my value but not change it.'''
    def __init__(self, value):
        self.value = value

    def __get__(self, obj, type=None):
        return self.value

    def __set__(self, obj, val):
        pass


class Demo(object):
    x = ConstantAttribute(10)


class SubDemo(Demo):
    x = 10


demo = Demo()
subdemo = SubDemo()
# should not change
demo.x = 100
# should change
subdemo.x = 100
print "small demo", demo.x
print "small subdemo", subdemo.x
print "big demo", Demo.x
print "big subdemo", SubDemo.x

导致。。。

small demo 10
small subdemo 100
big demo 10
big subdemo 10

如果您不喜欢忽略设置值(上面的传递),您总是可以引发异常。如果您正在寻找C++、Java风格的静态类变量:

class StaticAttribute(object):
    def __init__(self, value):
        self.value = value

    def __get__(self, obj, type=None):
        return self.value

    def __set__(self, obj, val):
        self.value = val

请查看此答案和HOWTO官方文件,以了解有关描述符的更多信息。

类变量并允许子类化

假设你不是在寻找一个真正的静态变量,而是一个类似于蟒蛇的东西,它可以为同意的成年人做同样的工作,那么就使用一个类变量。这将为您提供一个所有实例都可以访问(和更新)的变量

注意:其他许多使用类变量的答案都会破坏子类化。应避免直接按名称引用类。

from contextlib import contextmanager

class Sheldon(object):
    foo = 73

    def __init__(self, n):
        self.n = n

    def times(self):
        cls = self.__class__
        return cls.foo * self.n
        #self.foo * self.n would give the same result here but is less readable
        # it will also create a local variable which will make it easier to break your code
    
    def updatefoo(self):
        cls = self.__class__
        cls.foo *= self.n
        #self.foo *= self.n will not work here
        # assignment will try to create a instance variable foo

    @classmethod
    @contextmanager
    def reset_after_test(cls):
        originalfoo = cls.foo
        yield
        cls.foo = originalfoo
        #if you don't do this then running a full test suite will fail
        #updates to foo in one test will be kept for later tests

将为您提供与使用Sheldon.foo处理变量相同的功能,并将通过以下测试:

def test_times():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        assert s.times() == 146

def test_update():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s.updatefoo()
        assert Sheldon.foo == 146

def test_two_instances():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s3 = Sheldon(3)
        assert s.times() == 146
        assert s3.times() == 219
        s3.updatefoo()
        assert s.times() == 438

它还允许其他人简单地:

class Douglas(Sheldon):
    foo = 42

这也将起作用:

def test_subclassing():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84
        assert s.times() == 146
        d.updatefoo()
        assert d.times() == 168 #Douglas.Foo was updated
        assert s.times() == 146 #Seldon.Foo is still 73

def test_subclassing_reset():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84 #Douglas.foo was reset after the last test
        assert s.times() == 146 #and so was Sheldon.foo

有关创建课程时要注意的事项的最佳建议,请查看Raymond Hettinger的视频https://www.youtube.com/watch?v=HTLu2DFOdTg