如何在Python中创建类(即静态)变量或方法?


当前回答

关于这个答案,对于常量静态变量,可以使用描述符。下面是一个示例:

class ConstantAttribute(object):
    '''You can initialize my value but not change it.'''
    def __init__(self, value):
        self.value = value

    def __get__(self, obj, type=None):
        return self.value

    def __set__(self, obj, val):
        pass


class Demo(object):
    x = ConstantAttribute(10)


class SubDemo(Demo):
    x = 10


demo = Demo()
subdemo = SubDemo()
# should not change
demo.x = 100
# should change
subdemo.x = 100
print "small demo", demo.x
print "small subdemo", subdemo.x
print "big demo", Demo.x
print "big subdemo", SubDemo.x

导致。。。

small demo 10
small subdemo 100
big demo 10
big subdemo 10

如果您不喜欢忽略设置值(上面的传递),您总是可以引发异常。如果您正在寻找C++、Java风格的静态类变量:

class StaticAttribute(object):
    def __init__(self, value):
        self.value = value

    def __get__(self, obj, type=None):
        return self.value

    def __set__(self, obj, val):
        self.value = val

请查看此答案和HOWTO官方文件,以了解有关描述符的更多信息。

其他回答

为了避免任何潜在的混淆,我想对比静态变量和不可变对象。

一些基本对象类型,如整数、浮点数、字符串和元组,在Python中是不可变的。这意味着由给定名称引用的对象如果属于上述对象类型之一,则不能更改。可以将名称重新分配给不同的对象,但不能更改对象本身。

通过禁止变量名指向除当前指向的对象之外的任何对象,使变量成为静态变量更进一步。(注意:这是一个通用的软件概念,并不特定于Python;请参阅其他人的帖子,了解有关在Python中实现静态的信息)。

在类定义中声明但不在方法中声明的变量是类或静态变量:

>>> class MyClass:
...     i = 3
...
>>> MyClass.i
3 

正如@millerdev所指出的,这会创建一个类级别i变量,但这与任何实例级别i变量都不同,因此您可以

>>> m = MyClass()
>>> m.i = 4
>>> MyClass.i, m.i
>>> (3, 4)

这与C++和Java不同,但与C#没有太大区别,在C#中,不能使用对实例的引用来访问静态成员。

看看Python教程对类和类对象的主题有什么看法。

@Steve Johnson已经回答了静态方法的问题,也在Python库参考中的“内置函数”中进行了说明。

class C:
    @staticmethod
    def f(arg1, arg2, ...): ...

@beidy推荐classmethods而不是staticmethod,因为该方法随后会接收类类型作为第一个参数。

您还可以向类动态添加类变量

>>> class X:
...     pass
... 
>>> X.bar = 0
>>> x = X()
>>> x.bar
0
>>> x.foo
Traceback (most recent call last):
  File "<interactive input>", line 1, in <module>
AttributeError: X instance has no attribute 'foo'
>>> X.foo = 1
>>> x.foo
1

类实例可以更改类变量

class X:
  l = []
  def __init__(self):
    self.l.append(1)

print X().l
print X().l

>python test.py
[1]
[1, 1]

关于静态财产和实例财产,需要注意一件特殊的事情,如下例所示:

class my_cls:
  my_prop = 0

#static property
print my_cls.my_prop  #--> 0

#assign value to static property
my_cls.my_prop = 1 
print my_cls.my_prop  #--> 1

#access static property thru' instance
my_inst = my_cls()
print my_inst.my_prop #--> 1

#instance property is different from static property 
#after being assigned a value
my_inst.my_prop = 2
print my_cls.my_prop  #--> 1
print my_inst.my_prop #--> 2

这意味着在将值分配给实例属性之前,如果我们试图通过“实例”访问属性,则使用静态值。python类中声明的每个属性在内存中总是有一个静态槽。

类变量并允许子类化

假设你不是在寻找一个真正的静态变量,而是一个类似于蟒蛇的东西,它可以为同意的成年人做同样的工作,那么就使用一个类变量。这将为您提供一个所有实例都可以访问(和更新)的变量

注意:其他许多使用类变量的答案都会破坏子类化。应避免直接按名称引用类。

from contextlib import contextmanager

class Sheldon(object):
    foo = 73

    def __init__(self, n):
        self.n = n

    def times(self):
        cls = self.__class__
        return cls.foo * self.n
        #self.foo * self.n would give the same result here but is less readable
        # it will also create a local variable which will make it easier to break your code
    
    def updatefoo(self):
        cls = self.__class__
        cls.foo *= self.n
        #self.foo *= self.n will not work here
        # assignment will try to create a instance variable foo

    @classmethod
    @contextmanager
    def reset_after_test(cls):
        originalfoo = cls.foo
        yield
        cls.foo = originalfoo
        #if you don't do this then running a full test suite will fail
        #updates to foo in one test will be kept for later tests

将为您提供与使用Sheldon.foo处理变量相同的功能,并将通过以下测试:

def test_times():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        assert s.times() == 146

def test_update():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s.updatefoo()
        assert Sheldon.foo == 146

def test_two_instances():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s3 = Sheldon(3)
        assert s.times() == 146
        assert s3.times() == 219
        s3.updatefoo()
        assert s.times() == 438

它还允许其他人简单地:

class Douglas(Sheldon):
    foo = 42

这也将起作用:

def test_subclassing():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84
        assert s.times() == 146
        d.updatefoo()
        assert d.times() == 168 #Douglas.Foo was updated
        assert s.times() == 146 #Seldon.Foo is still 73

def test_subclassing_reset():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84 #Douglas.foo was reset after the last test
        assert s.times() == 146 #and so was Sheldon.foo

有关创建课程时要注意的事项的最佳建议,请查看Raymond Hettinger的视频https://www.youtube.com/watch?v=HTLu2DFOdTg