如何在Python中创建类(即静态)变量或方法?


当前回答

您可以使用列表或字典来获取实例之间的“静态行为”。

class Fud:

     class_vars = {'origin_open':False}

     def __init__(self, origin = True):
         self.origin = origin
         self.opened = True
         if origin:
             self.class_vars['origin_open'] = True


     def make_another_fud(self):
         ''' Generating another Fud() from the origin instance '''

         return Fud(False)


     def close(self):
         self.opened = False
         if self.origin:
             self.class_vars['origin_open'] = False


fud1 = Fud()
fud2 = fud1.make_another_fud()

print (f"is this the original fud: {fud2.origin}")
print (f"is the original fud open: {fud2.class_vars['origin_open']}")
# is this the original fud: False
# is the original fud open: True

fud1.close()

print (f"is the original fud open: {fud2.class_vars['origin_open']}")
# is the original fud open: False

其他回答

在类定义中声明但不在方法中声明的变量是类或静态变量:

>>> class MyClass:
...     i = 3
...
>>> MyClass.i
3 

正如@millerdev所指出的,这会创建一个类级别i变量,但这与任何实例级别i变量都不同,因此您可以

>>> m = MyClass()
>>> m.i = 4
>>> MyClass.i, m.i
>>> (3, 4)

这与C++和Java不同,但与C#没有太大区别,在C#中,不能使用对实例的引用来访问静态成员。

看看Python教程对类和类对象的主题有什么看法。

@Steve Johnson已经回答了静态方法的问题,也在Python库参考中的“内置函数”中进行了说明。

class C:
    @staticmethod
    def f(arg1, arg2, ...): ...

@beidy推荐classmethods而不是staticmethod,因为该方法随后会接收类类型作为第一个参数。

可以使用静态类变量,但可能不值得这样做。

这里有一个用Python 3编写的概念证明——如果任何确切的细节都是错误的,那么可以对代码进行调整,以匹配静态变量所指的任何内容:


class Static:
    def __init__(self, value, doc=None):
        self.deleted = False
        self.value = value
        self.__doc__ = doc
    def __get__(self, inst, cls=None):
        if self.deleted:
            raise AttributeError('Attribute not set')
        return self.value
    def __set__(self, inst, value):
        self.deleted = False
        self.value = value
    def __delete__(self, inst):
        self.deleted = True

class StaticType(type):
    def __delattr__(cls, name):
        obj = cls.__dict__.get(name)
        if isinstance(obj, Static):
            obj.__delete__(name)
        else:
            super(StaticType, cls).__delattr__(name)
    def __getattribute__(cls, *args):
        obj = super(StaticType, cls).__getattribute__(*args)
        if isinstance(obj, Static):
            obj = obj.__get__(cls, cls.__class__)
        return obj
    def __setattr__(cls, name, val):
        # check if object already exists
        obj = cls.__dict__.get(name)
        if isinstance(obj, Static):
            obj.__set__(name, val)
        else:
            super(StaticType, cls).__setattr__(name, val)

使用中:

class MyStatic(metaclass=StaticType):
    """
    Testing static vars
    """
    a = Static(9)
    b = Static(12)
    c = 3

class YourStatic(MyStatic):
    d = Static('woo hoo')
    e = Static('doo wop')

以及一些测试:

ms1 = MyStatic()
ms2 = MyStatic()
ms3 = MyStatic()
assert ms1.a == ms2.a == ms3.a == MyStatic.a
assert ms1.b == ms2.b == ms3.b == MyStatic.b
assert ms1.c == ms2.c == ms3.c == MyStatic.c
ms1.a = 77
assert ms1.a == ms2.a == ms3.a == MyStatic.a
ms2.b = 99
assert ms1.b == ms2.b == ms3.b == MyStatic.b
MyStatic.a = 101
assert ms1.a == ms2.a == ms3.a == MyStatic.a
MyStatic.b = 139
assert ms1.b == ms2.b == ms3.b == MyStatic.b
del MyStatic.b
for inst in (ms1, ms2, ms3):
    try:
        getattr(inst, 'b')
    except AttributeError:
        pass
    else:
        print('AttributeError not raised on %r' % attr)
ms1.c = 13
ms2.c = 17
ms3.c = 19
assert ms1.c == 13
assert ms2.c == 17
assert ms3.c == 19
MyStatic.c = 43
assert ms1.c == 13
assert ms2.c == 17
assert ms3.c == 19

ys1 = YourStatic()
ys2 = YourStatic()
ys3 = YourStatic()
MyStatic.b = 'burgler'
assert ys1.a == ys2.a == ys3.a == YourStatic.a == MyStatic.a
assert ys1.b == ys2.b == ys3.b == YourStatic.b == MyStatic.b
assert ys1.d == ys2.d == ys3.d == YourStatic.d
assert ys1.e == ys2.e == ys3.e == YourStatic.e
ys1.a = 'blah'
assert ys1.a == ys2.a == ys3.a == YourStatic.a == MyStatic.a
ys2.b = 'kelp'
assert ys1.b == ys2.b == ys3.b == YourStatic.b == MyStatic.b
ys1.d = 'fee'
assert ys1.d == ys2.d == ys3.d == YourStatic.d
ys2.e = 'fie'
assert ys1.e == ys2.e == ys3.e == YourStatic.e
MyStatic.a = 'aargh'
assert ys1.a == ys2.a == ys3.a == YourStatic.a == MyStatic.a

类变量并允许子类化

假设你不是在寻找一个真正的静态变量,而是一个类似于蟒蛇的东西,它可以为同意的成年人做同样的工作,那么就使用一个类变量。这将为您提供一个所有实例都可以访问(和更新)的变量

注意:其他许多使用类变量的答案都会破坏子类化。应避免直接按名称引用类。

from contextlib import contextmanager

class Sheldon(object):
    foo = 73

    def __init__(self, n):
        self.n = n

    def times(self):
        cls = self.__class__
        return cls.foo * self.n
        #self.foo * self.n would give the same result here but is less readable
        # it will also create a local variable which will make it easier to break your code
    
    def updatefoo(self):
        cls = self.__class__
        cls.foo *= self.n
        #self.foo *= self.n will not work here
        # assignment will try to create a instance variable foo

    @classmethod
    @contextmanager
    def reset_after_test(cls):
        originalfoo = cls.foo
        yield
        cls.foo = originalfoo
        #if you don't do this then running a full test suite will fail
        #updates to foo in one test will be kept for later tests

将为您提供与使用Sheldon.foo处理变量相同的功能,并将通过以下测试:

def test_times():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        assert s.times() == 146

def test_update():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s.updatefoo()
        assert Sheldon.foo == 146

def test_two_instances():
    with Sheldon.reset_after_test():
        s = Sheldon(2)
        s3 = Sheldon(3)
        assert s.times() == 146
        assert s3.times() == 219
        s3.updatefoo()
        assert s.times() == 438

它还允许其他人简单地:

class Douglas(Sheldon):
    foo = 42

这也将起作用:

def test_subclassing():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84
        assert s.times() == 146
        d.updatefoo()
        assert d.times() == 168 #Douglas.Foo was updated
        assert s.times() == 146 #Seldon.Foo is still 73

def test_subclassing_reset():
    with Sheldon.reset_after_test(), Douglas.reset_after_test():
        s = Sheldon(2)
        d = Douglas(2)
        assert d.times() == 84 #Douglas.foo was reset after the last test
        assert s.times() == 146 #and so was Sheldon.foo

有关创建课程时要注意的事项的最佳建议,请查看Raymond Hettinger的视频https://www.youtube.com/watch?v=HTLu2DFOdTg

就我个人而言,每当我需要静态方法时,我都会使用类方法。主要是因为我把课堂当作一个论点。

class myObj(object):
   def myMethod(cls)
     ...
   myMethod = classmethod(myMethod) 

或使用装饰器

class myObj(object):
   @classmethod
   def myMethod(cls)

对于静态财产。。是时候查一下python的定义了。。变量始终可以更改。有两种类型是可变的和不可变的。。此外,还有类属性和实例属性。。没有什么东西真正像java&c意义上的静态属性++

为什么要使用Python意义上的静态方法,如果它与类没有任何关系!如果我是你,我要么使用classmethod,要么定义独立于类的方法。

关于静态财产和实例财产,需要注意一件特殊的事情,如下例所示:

class my_cls:
  my_prop = 0

#static property
print my_cls.my_prop  #--> 0

#assign value to static property
my_cls.my_prop = 1 
print my_cls.my_prop  #--> 1

#access static property thru' instance
my_inst = my_cls()
print my_inst.my_prop #--> 1

#instance property is different from static property 
#after being assigned a value
my_inst.my_prop = 2
print my_cls.my_prop  #--> 1
print my_inst.my_prop #--> 2

这意味着在将值分配给实例属性之前,如果我们试图通过“实例”访问属性,则使用静态值。python类中声明的每个属性在内存中总是有一个静态槽。