可能的重复: 滚动中值算法

假设整数是从数据流中读取的。以有效的方式查找到目前为止读取的元素的中位数。

我读过的解决方案:我们可以在左边使用max堆来表示小于有效中位数的元素,在右边使用min堆来表示大于有效中位数的元素。

在处理一个传入元素后,堆中的元素数量最多相差1个元素。当两个堆包含相同数量的元素时,我们发现堆根数据的平均值为有效中位数。当堆不平衡时,我们从包含更多元素的堆根中选择有效中值。

但是我们如何构造最大堆和最小堆也就是说,我们如何知道这里的有效中值?我认为我们应该在max-heap中插入1个元素然后在min-heap中插入下一个元素,如此类推。如果我说错了请指正。


当前回答

我发现的最有效的计算流百分位数的方法是P²算法:Raj Jain, Imrich Chlamtac:不存储观测数据的动态计算分位数和直方图的P²算法。Commun。Acm 28(10): 1076-1085 (1985)

该算法易于实现,工作效果非常好。然而,这只是一个估计,所以要记住这一点。来自摘要:

A heuristic algorithm is proposed for dynamic calculation qf the median and other quantiles. The estimates are produced dynamically as the observations are generated. The observations are not stored; therefore, the algorithm has a very small and fixed storage requirement regardless of the number of observations. This makes it ideal for implementing in a quantile chip that can be used in industrial controllers and recorders. The algorithm is further extended to histogram plotting. The accuracy of the algorithm is analyzed.

其他回答

你不能只用一个堆来做这个吗?更新:没有。请看评论。

不变性:在读取2*n个输入后,最小堆保存其中最大的n个。

循环:读取2个输入。将它们都添加到堆中,并删除堆的最小值。这将重新建立不变量。

所以当读取了2n个输入时,堆的最小值是第n大的。在中间位置附近取两个元素的平均值,以及在奇数个输入之后处理查询,需要稍微复杂一点。

如果输入的方差是统计分布的(如正态分布、对数正态分布等),那么从任意长的数据流中估计百分位数/中位数是一种合理的方法。

int n = 0;  // Running count of elements observed so far  
#define SIZE 10000
int reservoir[SIZE];  

while(streamHasData())
{
  int x = readNumberFromStream();

  if (n < SIZE)
  {
       reservoir[n++] = x;
  }         
  else 
  {
      int p = random(++n); // Choose a random number 0 >= p < n
      if (p < SIZE)
      {
           reservoir[p] = x;
      }
  }
}

“水库”则是一个运行的,均匀的(公平的),所有输入的样本-无论大小。然后找到中位数(或任何百分位数)是一个简单的问题,即对存储库进行排序并轮询感兴趣的点。

由于存储库的大小是固定的,因此排序可以被认为是有效的O(1) -并且该方法运行的时间和内存消耗都是常数。

高效这个词取决于上下文。这个问题的解决方案取决于执行的查询量与插入量的关系。假设你插入N个数字K次直到最后你对中位数感兴趣。基于堆的算法的复杂度是O(N log N + K)。

考虑下面的替代方案。将数字放入一个数组中,对于每个查询,运行线性选择算法(比如使用快速排序枢轴)。现在你有了一个运行时间为O(K N)的算法。

现在如果K足够小(不频繁查询),后一种算法实际上更有效,反之亦然。

我发现的最有效的计算流百分位数的方法是P²算法:Raj Jain, Imrich Chlamtac:不存储观测数据的动态计算分位数和直方图的P²算法。Commun。Acm 28(10): 1076-1085 (1985)

该算法易于实现,工作效果非常好。然而,这只是一个估计,所以要记住这一点。来自摘要:

A heuristic algorithm is proposed for dynamic calculation qf the median and other quantiles. The estimates are produced dynamically as the observations are generated. The observations are not stored; therefore, the algorithm has a very small and fixed storage requirement regardless of the number of observations. This makes it ideal for implementing in a quantile chip that can be used in industrial controllers and recorders. The algorithm is further extended to histogram plotting. The accuracy of the algorithm is analyzed.

如果我们想要找到n个最近出现的元素的中值,这个问题有一个精确的解决方案,只需要将n个最近出现的元素保存在内存中。它速度快,规模大。

可索引skiplist支持O(ln n)插入、删除和任意元素的索引搜索,同时保持排序顺序。当再加上一个FIFO队列来跟踪第n个最古老的条目时,解决方案很简单:

class RunningMedian:
    'Fast running median with O(lg n) updates where n is the window size'

    def __init__(self, n, iterable):
        self.it = iter(iterable)
        self.queue = deque(islice(self.it, n))
        self.skiplist = IndexableSkiplist(n)
        for elem in self.queue:
            self.skiplist.insert(elem)

    def __iter__(self):
        queue = self.queue
        skiplist = self.skiplist
        midpoint = len(queue) // 2
        yield skiplist[midpoint]
        for newelem in self.it:
            oldelem = queue.popleft()
            skiplist.remove(oldelem)
            queue.append(newelem)
            skiplist.insert(newelem)
            yield skiplist[midpoint]

以下是完整工作代码的链接(一个易于理解的类版本和一个内联可索引的skiplist代码的优化生成器版本):

http://code.activestate.com/recipes/576930-efficient-running-median-using-an-indexable-skipli/ http://code.activestate.com/recipes/577073。