可能的重复:
滚动中值算法
假设整数是从数据流中读取的。以有效的方式查找到目前为止读取的元素的中位数。
我读过的解决方案:我们可以在左边使用max堆来表示小于有效中位数的元素,在右边使用min堆来表示大于有效中位数的元素。
在处理一个传入元素后,堆中的元素数量最多相差1个元素。当两个堆包含相同数量的元素时,我们发现堆根数据的平均值为有效中位数。当堆不平衡时,我们从包含更多元素的堆根中选择有效中值。
但是我们如何构造最大堆和最小堆也就是说,我们如何知道这里的有效中值?我认为我们应该在max-heap中插入1个元素然后在min-heap中插入下一个元素,如此类推。如果我说错了请指正。
如果我们想要找到n个最近出现的元素的中值,这个问题有一个精确的解决方案,只需要将n个最近出现的元素保存在内存中。它速度快,规模大。
可索引skiplist支持O(ln n)插入、删除和任意元素的索引搜索,同时保持排序顺序。当再加上一个FIFO队列来跟踪第n个最古老的条目时,解决方案很简单:
class RunningMedian:
'Fast running median with O(lg n) updates where n is the window size'
def __init__(self, n, iterable):
self.it = iter(iterable)
self.queue = deque(islice(self.it, n))
self.skiplist = IndexableSkiplist(n)
for elem in self.queue:
self.skiplist.insert(elem)
def __iter__(self):
queue = self.queue
skiplist = self.skiplist
midpoint = len(queue) // 2
yield skiplist[midpoint]
for newelem in self.it:
oldelem = queue.popleft()
skiplist.remove(oldelem)
queue.append(newelem)
skiplist.insert(newelem)
yield skiplist[midpoint]
以下是完整工作代码的链接(一个易于理解的类版本和一个内联可索引的skiplist代码的优化生成器版本):
http://code.activestate.com/recipes/576930-efficient-running-median-using-an-indexable-skipli/
http://code.activestate.com/recipes/577073。
我发现的最有效的计算流百分位数的方法是P²算法:Raj Jain, Imrich Chlamtac:不存储观测数据的动态计算分位数和直方图的P²算法。Commun。Acm 28(10): 1076-1085 (1985)
该算法易于实现,工作效果非常好。然而,这只是一个估计,所以要记住这一点。来自摘要:
A heuristic algorithm is proposed for dynamic calculation qf the median and other quantiles. The estimates are produced dynamically as the observations are generated. The observations are not stored; therefore, the algorithm has a very small and fixed storage requirement regardless of the number of observations. This makes it ideal for implementing in a quantile chip that can be used in industrial controllers and recorders. The algorithm is further extended to histogram plotting. The accuracy of the algorithm is analyzed.
如果输入的方差是统计分布的(如正态分布、对数正态分布等),那么从任意长的数据流中估计百分位数/中位数是一种合理的方法。
int n = 0; // Running count of elements observed so far
#define SIZE 10000
int reservoir[SIZE];
while(streamHasData())
{
int x = readNumberFromStream();
if (n < SIZE)
{
reservoir[n++] = x;
}
else
{
int p = random(++n); // Choose a random number 0 >= p < n
if (p < SIZE)
{
reservoir[p] = x;
}
}
}
“水库”则是一个运行的,均匀的(公平的),所有输入的样本-无论大小。然后找到中位数(或任何百分位数)是一个简单的问题,即对存储库进行排序并轮询感兴趣的点。
由于存储库的大小是固定的,因此排序可以被认为是有效的O(1) -并且该方法运行的时间和内存消耗都是常数。