我想了很久了。就像题目说的,哪个更快,是实际函数还是简单地取1 / 2次幂?

更新

这不是一个过早优化的问题。这只是一个底层代码如何实际工作的问题。Python代码的工作原理是什么?

我给Guido van Rossum发了一封邮件,因为我真的很想知道这些方法的区别。

我的电子邮件:

在Python中至少有3种方法来求平方根:math。返回值, '**'运算符和pow(x,.5)。我只是好奇它们之间的区别 每一个的实现。说到效率 是更好吗?

他的回答:

Pow和**是等价的;数学。根号方根不适用于复数, 并链接到C的sqrt()函数。至于哪一个是 快点,我不知道……


当前回答

Math.sqrt (x)比x**0.5快得多。

import math
N = 1000000
%%timeit
for i in range(N):
    z=i**.5

10个循环,最好的3:156毫秒每循环

%%timeit
for i in range(N):
    z=math.sqrt(i)

10个循环,最好的3:91.1毫秒每循环

使用Python 3.6.9(笔记本)。

其他回答

克劳狄的结果和我的不一样。我在一台旧的P4 2.4Ghz机器上使用Ubuntu上的Python 2.6…以下是我的结果:

>>> timeit1()
Took 0.564911 seconds
>>> timeit2()
Took 0.403087 seconds
>>> timeit1()
Took 0.604713 seconds
>>> timeit2()
Took 0.387749 seconds
>>> timeit1()
Took 0.587829 seconds
>>> timeit2()
Took 0.379381 seconds

对我来说,SQRT一直都更快……甚至Codepad.org现在似乎也同意,在本地环境下,根号rt更快(http://codepad.org/6trzcM3j)。Codepad目前运行的是Python 2.5。也许克劳狄第一次回答的时候,他们使用的是2.4或更老的版本?

事实上,即使使用math.sqrt(i)来代替arg(i),我仍然可以得到更好的sqrt。在本例中,timeit2()在我的机器上花费了0.53到0.55秒,这仍然比timeit1的0.56-0.60秒要好。

我会说,在现代Python中,使用数学。一定要把它带入本地环境,或者用somevar=math。或者从数学导入根号。

Math.sqrt (x)比x**0.5快得多。

import math
N = 1000000
%%timeit
for i in range(N):
    z=i**.5

10个循环,最好的3:156毫秒每循环

%%timeit
for i in range(N):
    z=math.sqrt(i)

10个循环,最好的3:91.1毫秒每循环

使用Python 3.6.9(笔记本)。

你到底做了多少次平方根?你正在尝试用Python编写一些3D图形引擎吗?如果不是,那么为什么要使用晦涩的代码而不是易于阅读的代码呢?在我能预见的任何应用中,时间差都比任何人能注意到的要小。我真的不想放下你的问题,但看起来你在不成熟的优化上走得有点太远了。

使用Claudiu的代码,在我的机器上甚至有“from math import√”x**。5更快,但使用psyco.full() sqrt(x)要快得多,至少快200%

有人评论《雷神之锤3》中的“快速牛顿-拉弗森平方根”……我用ctypes实现了它,但与本机版本相比,它非常慢。我将尝试一些优化和替代实现。

from ctypes import c_float, c_long, byref, POINTER, cast

def sqrt(num):
 xhalf = 0.5*num
 x = c_float(num)
 i = cast(byref(x), POINTER(c_long)).contents.value
 i = c_long(0x5f375a86 - (i>>1))
 x = cast(byref(i), POINTER(c_float)).contents.value

 x = x*(1.5-xhalf*x*x)
 x = x*(1.5-xhalf*x*x)
 return x * num

这是另一个使用struct的方法,比ctypes版本快3.6倍,但仍然是C的1/10。

from struct import pack, unpack

def sqrt_struct(num):
 xhalf = 0.5*num
 i = unpack('L', pack('f', 28.0))[0]
 i = 0x5f375a86 - (i>>1)
 x = unpack('f', pack('L', i))[0]

 x = x*(1.5-xhalf*x*x)
 x = x*(1.5-xhalf*x*x)
 return x * num