我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

要设置值,使用:

df.at[0, 'clm1'] = 0

最快推荐的设置变量的方法。 Set_value, ix已弃用。 没有警告,不像iloc和loc

其他回答

苏,你的问题是将['x',C]的NaN转换为值10

答案是…

df['x'].loc['C':]=10
df

另一种代码是

df.loc['C', 'x']=10
df

如果想要将df的位置(0,0)中的单元格更改为'"236"76"'之类的字符串,则可以使用以下选项:

df[0][0] = '"236"76"'
# %timeit df[0][0] = '"236"76"'
# 938 µs ± 83.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

或者使用pandas.DataFrame.at

df.at[0, 0] = '"236"76"'
#  %timeit df.at[0, 0] = '"236"76"' 
#15 µs ± 2.09 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each)

或者使用pandas.DataFrame.iat

df.iat[0, 0] = '"236"76"'
#  %timeit df.iat[0, 0] = '"236"76"'
# 41.1 µs ± 3.09 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

或者使用pandas.DataFrame.loc

df.loc[0, 0] = '"236"76"'
#  %timeit df.loc[0, 0] = '"236"76"'
# 5.21 ms ± 401 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

或者使用pandas.DataFrame.iloc

df.iloc[0, 0] = '"236"76"'
#  %timeit df.iloc[0, 0] = '"236"76"'
# 5.12 ms ± 300 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

如果时间是相关的,使用pandas.DataFrame.at是最快的方法。

如果你不想改变整行的值,而只是改变一些列的值:

x = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
x.iloc[1] = dict(A=10, B=-10)

更新:.set_value方法将被弃用。它们是很好的替代品,不幸的是熊猫提供的文件很少


最快的方法是使用set_value。该方法比.ix方法快100倍。例如:

df。set_value('C', 'x', 10)

避免使用链式索引赋值

您正在处理带有链式索引的赋值,这将导致SettingWithCopy警告。无论如何都要避免这种情况。

你的作业将不得不诉诸于一个单独的.loc[]或.iloc[]片,正如这里解释的那样。因此,在你的情况下:

df.loc['C', 'x'] = 10