我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

你也可以使用.loc进行条件查找,如下所示:

df.loc[df[<some_column_name>] == <condition>, [<another_column_name>]] = <value_to_add>

其中<some_column_name是您想要检查<条件>变量的列,<another_column_name>是您想要添加的列(可以是新列,也可以是已经存在的列)。<value_to_add>是您想要添加到该列/行中的值。

这个示例并不能精确地解决当前的问题,但是对于想要根据条件添加特定值的人来说,它可能是有用的。

其他回答

已弃用Set_value()。

从0.23.4版本开始,Pandas“宣布了未来”…

>>> df
                   Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        245.0
2      Chevrolet Malibu        190.0
>>> df.set_value(2, 'Prices (U$)', 240.0)
__main__:1: FutureWarning: set_value is deprecated and will be removed in a future release.
Please use .at[] or .iat[] accessors instead

                   Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        245.0
2      Chevrolet Malibu        240.0

考虑到这些建议,以下是如何使用它们的演示:

按行/列整数位置


>>> df.iat[1, 1] = 260.0
>>> df
                   Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        260.0
2      Chevrolet Malibu        240.0

通过行/列标签


>>> df.at[2, "Cars"] = "Chevrolet Corvette"
>>> df
                  Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        260.0
2    Chevrolet Corvette        240.0

引用:

pandas.DataFrame.iat pandas.DataFrame.at

使用index with condition的一种方法是首先获取满足条件的所有行的索引,然后简单地以多种方式使用这些行索引

conditional_index = df.loc[ df['col name'] <condition> ].index

示例条件如下

==5, >10 , =="Any string", >= DateTime

然后您可以以各种方式使用这些行索引,例如

替换conditional_index的一列值

df.loc[conditional_index , [col name]]= <new value>

替换conditional_index的多列值

df.loc[conditional_index, [col1,col2]]= <new value>

保存conditional_index的一个好处是,您可以将一个列的值分配给具有相同行索引的另一个列

df.loc[conditional_index, [col1,col2]]= df.loc[conditional_index,'col name']

这一切都是可能的,因为.index返回一个索引数组,.loc可以直接寻址,这样就避免了一次又一次的遍历。

避免使用链式索引赋值

您正在处理带有链式索引的赋值,这将导致SettingWithCopy警告。无论如何都要避免这种情况。

你的作业将不得不诉诸于一个单独的.loc[]或.iloc[]片,正如这里解释的那样。因此,在你的情况下:

df.loc['C', 'x'] = 10

.iat /。是很好的解决办法。 假设你有这样一个简单的数据帧:

   A   B   C
0  1   8   4 
1  3   9   6
2  22 33  52

如果我们想修改单元格[0,"A"]的值,你可以使用这些解决方案之一:

df。Iat [0,0] = 2 df。at[0,'A'] = 2

下面是一个如何使用iat获取和设置cell值的完整示例:

def prepossessing(df):
  for index in range(0,len(df)): 
      df.iat[index,0] = df.iat[index,0] * 2
  return df

Y_train前:

    0
0   54
1   15
2   15
3   8
4   31
5   63
6   11

Y_train调用prepossession函数后,iat改变每个单元格的值乘以2:

     0
0   108
1   30
2   30
3   16
4   62
5   126
6   22

你也可以使用.loc进行条件查找,如下所示:

df.loc[df[<some_column_name>] == <condition>, [<another_column_name>]] = <value_to_add>

其中<some_column_name是您想要检查<条件>变量的列,<another_column_name>是您想要添加的列(可以是新列,也可以是已经存在的列)。<value_to_add>是您想要添加到该列/行中的值。

这个示例并不能精确地解决当前的问题,但是对于想要根据条件添加特定值的人来说,它可能是有用的。