我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

如果你不想改变整行的值,而只是改变一些列的值:

x = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
x.iloc[1] = dict(A=10, B=-10)

其他回答

RukTech的答案是df。set_value('C', 'x', 10)比我下面建议的选项快得多。然而,它已被弃用。

接下来,推荐的方法是.iat/.at。


为什么df.xs('C')['x']=10无效:

df.xs('C')在默认情况下返回一个新的数据框架,其中包含数据的副本,因此

df.xs('C')['x']=10

只修改这个新的数据帧。

Df ['x']返回Df数据框架的视图,因此

df['x']['C'] = 10

修改df本身。

警告:有时很难预测一个操作返回的是一个副本还是一个视图。出于这个原因,文档建议避免使用“链式索引”进行赋值。


所以建议的替代方案是

df.at['C', 'x'] = 10

它改变了df。


In [18]: %timeit df.set_value('C', 'x', 10)
100000 loops, best of 3: 2.9 µs per loop

In [20]: %timeit df['x']['C'] = 10
100000 loops, best of 3: 6.31 µs per loop

In [81]: %timeit df.at['C', 'x'] = 10
100000 loops, best of 3: 9.2 µs per loop

建议的设置方法(根据维护人员)为:

df.ix['x','C']=10

使用“链式索引”(df['x']['C'])可能会导致问题。

See:

https://stackoverflow.com/a/21287235/1579844 http://pandas.pydata.org/pandas-docs/dev/indexing.html#indexing-view-versus-copy https://github.com/pydata/pandas/pull/6031

我建议:

df.loc[index_position, "column_name"] = some_value

同时修改多个单元格:

df。loc[start_idx_pos: End_idx_pos, "column_name"] = some_value . loc[start_idx_pos: End_idx_pos, "column_name"] = some_value

使用index with condition的一种方法是首先获取满足条件的所有行的索引,然后简单地以多种方式使用这些行索引

conditional_index = df.loc[ df['col name'] <condition> ].index

示例条件如下

==5, >10 , =="Any string", >= DateTime

然后您可以以各种方式使用这些行索引,例如

替换conditional_index的一列值

df.loc[conditional_index , [col name]]= <new value>

替换conditional_index的多列值

df.loc[conditional_index, [col1,col2]]= <new value>

保存conditional_index的一个好处是,您可以将一个列的值分配给具有相同行索引的另一个列

df.loc[conditional_index, [col1,col2]]= df.loc[conditional_index,'col name']

这一切都是可能的,因为.index返回一个索引数组,.loc可以直接寻址,这样就避免了一次又一次的遍历。

除了上面的答案之外,这里还有一个基准测试,比较了向已有的数据框架添加数据行的不同方法。它表明使用at或set-value对于大数据帧是最有效的方法(至少对于这些测试条件)。

为每一行创建新的数据框架,然后… ... 追加它(13.0 s) ... 串联它(13.1秒) 首先将所有新行存储在另一个容器中,转换为新数据帧一次,然后追加… 容器=列表的列表(2.0 s) 容器=列表字典(1.9 s) 预分配整个数据框架,遍历新行和所有列,并使用填充 ... (0.6秒) ... Set_value (0.4 s)

在测试中,使用了包含100,000行和1,000列的现有数据框架和随机numpy值。在这个数据框架中,添加了100个新行。

代码见下文:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 21 16:38:46 2018

@author: gebbissimo
"""

import pandas as pd
import numpy as np
import time

NUM_ROWS = 100000
NUM_COLS = 1000
data = np.random.rand(NUM_ROWS,NUM_COLS)
df = pd.DataFrame(data)

NUM_ROWS_NEW = 100
data_tot = np.random.rand(NUM_ROWS + NUM_ROWS_NEW,NUM_COLS)
df_tot = pd.DataFrame(data_tot)

DATA_NEW = np.random.rand(1,NUM_COLS)


#%% FUNCTIONS

# create and append
def create_and_append(df):
    for i in range(NUM_ROWS_NEW):
        df_new = pd.DataFrame(DATA_NEW)
        df = df.append(df_new)
    return df

# create and concatenate
def create_and_concat(df):
    for i in range(NUM_ROWS_NEW):
        df_new = pd.DataFrame(DATA_NEW)
        df = pd.concat((df, df_new))
    return df


# store as dict and 
def store_as_list(df):
    lst = [[] for i in range(NUM_ROWS_NEW)]
    for i in range(NUM_ROWS_NEW):
        for j in range(NUM_COLS):
            lst[i].append(DATA_NEW[0,j])
    df_new = pd.DataFrame(lst)
    df_tot = df.append(df_new)
    return df_tot

# store as dict and 
def store_as_dict(df):
    dct = {}
    for j in range(NUM_COLS):
        dct[j] = []
        for i in range(NUM_ROWS_NEW):
            dct[j].append(DATA_NEW[0,j])
    df_new = pd.DataFrame(dct)
    df_tot = df.append(df_new)
    return df_tot




# preallocate and fill using .at
def fill_using_at(df):
    for i in range(NUM_ROWS_NEW):
        for j in range(NUM_COLS):
            #print("i,j={},{}".format(i,j))
            df.at[NUM_ROWS+i,j] = DATA_NEW[0,j]
    return df


# preallocate and fill using .at
def fill_using_set(df):
    for i in range(NUM_ROWS_NEW):
        for j in range(NUM_COLS):
            #print("i,j={},{}".format(i,j))
            df.set_value(NUM_ROWS+i,j,DATA_NEW[0,j])
    return df


#%% TESTS
t0 = time.time()    
create_and_append(df)
t1 = time.time()
print('Needed {} seconds'.format(t1-t0))

t0 = time.time()    
create_and_concat(df)
t1 = time.time()
print('Needed {} seconds'.format(t1-t0))

t0 = time.time()    
store_as_list(df)
t1 = time.time()
print('Needed {} seconds'.format(t1-t0))

t0 = time.time()    
store_as_dict(df)
t1 = time.time()
print('Needed {} seconds'.format(t1-t0))

t0 = time.time()    
fill_using_at(df_tot)
t1 = time.time()
print('Needed {} seconds'.format(t1-t0))

t0 = time.time()    
fill_using_set(df_tot)
t1 = time.time()
print('Needed {} seconds'.format(t1-t0))