我有一个包含因子的数据帧。当我使用子集或其他索引函数创建这个数据帧的子集时,就创建了一个新的数据帧。然而,因子变量保留其所有原始水平,即使它们不存在于新的数据框架中。

这在绘制面图或使用依赖于因子级别的函数时会导致问题。

在新的数据框架中从一个因子中移除级别最简洁的方法是什么?

这里有一个例子:

df <- data.frame(letters=letters[1:5],
                    numbers=seq(1:5))

levels(df$letters)
## [1] "a" "b" "c" "d" "e"

subdf <- subset(df, numbers <= 3)
##   letters numbers
## 1       a       1
## 2       b       2
## 3       c       3    

# all levels are still there!
levels(subdf$letters)
## [1] "a" "b" "c" "d" "e"

当前回答

谢谢你提出这个问题。然而,以上的解决方案都不适合我。我为这个问题做了一个变通方案,分享它以防其他人偶然发现这个问题:

对于所有包含值为零的级别的因子列,您可以先将这些列转换为字符类型,然后再将它们转换回因子。

对于上面的问题,只需添加以下代码行:

# Convert into character
subdf$letters = as.character(subdf$letters)

# Convert back into factor
subdf$letters = as.factor(subdf$letters)

# Verify the levels in the subset
levels(subdf$letters)

其他回答

你所要做的就是在子集设置后再次应用factor()到你的变量:

> subdf$letters
[1] a b c
Levels: a b c d e
subdf$letters <- factor(subdf$letters)
> subdf$letters
[1] a b c
Levels: a b c

EDIT

因子页的例子如下:

factor(ff)      # drops the levels that do not occur

要从数据框架中的所有因子列中删除级别,您可以使用:

subdf <- subset(df, numbers <= 3)
subdf[] <- lapply(subdf, function(x) if(is.factor(x)) factor(x) else x)

我写了效用函数来做这个。现在我知道了gdata的drop。水平,看起来很相似。他们在这里(从这里):

present_levels <- function(x) intersect(levels(x), x)

trim_levels <- function(...) UseMethod("trim_levels")

trim_levels.factor <- function(x)  factor(x, levels=present_levels(x))

trim_levels.data.frame <- function(x) {
  for (n in names(x))
    if (is.factor(x[,n]))
      x[,n] = trim_levels(x[,n])
  x
}

另一种方法,但使用dplyr

library(dplyr)
subdf <- df %>% filter(numbers <= 3) %>% droplevels()
str(subdf)

编辑:

同样有效!感谢agenis

subdf <- df %>% filter(numbers <= 3) %>% droplevels
levels(subdf$letters)

这里有一种方法

varFactor <- factor(letters[1:15])
varFactor <- varFactor[1:5]
varFactor <- varFactor[drop=T]

非常有趣的话题,我特别喜欢因子子选择的想法。我以前遇到过类似的问题,我只是转换成字符,然后再转换回因子。

   df <- data.frame(letters=letters[1:5],numbers=seq(1:5))
   levels(df$letters)
   ## [1] "a" "b" "c" "d" "e"
   subdf <- df[df$numbers <= 3]
   subdf$letters<-factor(as.character(subdf$letters))