我有一个包含因子的数据帧。当我使用子集或其他索引函数创建这个数据帧的子集时,就创建了一个新的数据帧。然而,因子变量保留其所有原始水平,即使它们不存在于新的数据框架中。

这在绘制面图或使用依赖于因子级别的函数时会导致问题。

在新的数据框架中从一个因子中移除级别最简洁的方法是什么?

这里有一个例子:

df <- data.frame(letters=letters[1:5],
                    numbers=seq(1:5))

levels(df$letters)
## [1] "a" "b" "c" "d" "e"

subdf <- subset(df, numbers <= 3)
##   letters numbers
## 1       a       1
## 2       b       2
## 3       c       3    

# all levels are still there!
levels(subdf$letters)
## [1] "a" "b" "c" "d" "e"

当前回答

非常有趣的话题,我特别喜欢因子子选择的想法。我以前遇到过类似的问题,我只是转换成字符,然后再转换回因子。

   df <- data.frame(letters=letters[1:5],numbers=seq(1:5))
   levels(df$letters)
   ## [1] "a" "b" "c" "d" "e"
   subdf <- df[df$numbers <= 3]
   subdf$letters<-factor(as.character(subdf$letters))

其他回答

下面是另一种方法,我认为它相当于因子(..)方法:

> df <- data.frame(let=letters[1:5], num=1:5)
> subdf <- df[df$num <= 3, ]

> subdf$let <- subdf$let[ , drop=TRUE]

> levels(subdf$let)
[1] "a" "b" "c"

从R版本2.12开始,就有了一个droplevels()函数。

levels(droplevels(subdf$letters))

我写了效用函数来做这个。现在我知道了gdata的drop。水平,看起来很相似。他们在这里(从这里):

present_levels <- function(x) intersect(levels(x), x)

trim_levels <- function(...) UseMethod("trim_levels")

trim_levels.factor <- function(x)  factor(x, levels=present_levels(x))

trim_levels.data.frame <- function(x) {
  for (n in names(x))
    if (is.factor(x[,n]))
      x[,n] = trim_levels(x[,n])
  x
}

一个真正的droplevels函数是collapse::fdroplevels,它比droplevels快得多,并且不执行任何不必要的匹配或数值制表。例子:

library(collapse)
library(microbenchmark)

# wlddev data supplied in collapse, iso3c is a factor
data <- fsubset(wlddev, iso3c %!in% "USA")

microbenchmark(fdroplevels(data), droplevels(data), unit = "relative")
## Unit: relative
##               expr  min       lq     mean   median       uq      max neval cld
##  fdroplevels(data)  1.0  1.00000  1.00000  1.00000  1.00000  1.00000   100  a 
##   droplevels(data) 30.2 29.15873 24.54175 24.86147 22.11553 14.23274   100   b

另一种方法,但使用dplyr

library(dplyr)
subdf <- df %>% filter(numbers <= 3) %>% droplevels()
str(subdf)

编辑:

同样有效!感谢agenis

subdf <- df %>% filter(numbers <= 3) %>% droplevels
levels(subdf$letters)