在Python中似乎有很多方法来定义单例对象。对Stack Overflow是否有一致的意见?
当前回答
好吧,我知道,单胞胎可能是好的,也可能是坏的。这是我的实现,我只是扩展了一个经典的方法,在里面引入一个缓存,并产生许多不同类型的实例,或者许多相同类型的实例,但具有不同的参数。
我称它为Singleton_group,因为它将相似的实例分组在一起,并防止创建具有相同参数的相同类的对象:
# Peppelinux's cached singleton
class Singleton_group(object):
__instances_args_dict = {}
def __new__(cls, *args, **kwargs):
if not cls.__instances_args_dict.get((cls.__name__, args, str(kwargs))):
cls.__instances_args_dict[(cls.__name__, args, str(kwargs))] = super(Singleton_group, cls).__new__(cls, *args, **kwargs)
return cls.__instances_args_dict.get((cls.__name__, args, str(kwargs)))
# It's a dummy real world use example:
class test(Singleton_group):
def __init__(self, salute):
self.salute = salute
a = test('bye')
b = test('hi')
c = test('bye')
d = test('hi')
e = test('goodbye')
f = test('goodbye')
id(a)
3070148780L
id(b)
3070148908L
id(c)
3070148780L
b == d
True
b._Singleton_group__instances_args_dict
{('test', ('bye',), '{}'): <__main__.test object at 0xb6fec0ac>,
('test', ('goodbye',), '{}'): <__main__.test object at 0xb6fec32c>,
('test', ('hi',), '{}'): <__main__.test object at 0xb6fec12c>}
每个对象都携带单例缓存…这可能是邪恶的,但对一些人来说很有用:)
其他回答
谷歌Testing博客上也有一些有趣的文章,讨论了为什么单例是/可能是不好的,并且是一种反模式:
单身人士是病态的说谎者 单身人士都去哪儿了? 单身的根本原因
这是我自己对单例对象的实现。你所要做的就是布置课堂;为了获得单例,你必须使用Instance方法。这里有一个例子:
@Singleton
class Foo:
def __init__(self):
print 'Foo created'
f = Foo() # Error, this isn't how you get the instance of a singleton
f = Foo.instance() # Good. Being explicit is in line with the Python Zen
g = Foo.instance() # Returns already created instance
print f is g # True
下面是代码:
class Singleton:
"""
A non-thread-safe helper class to ease implementing singletons.
This should be used as a decorator -- not a metaclass -- to the
class that should be a singleton.
The decorated class can define one `__init__` function that
takes only the `self` argument. Also, the decorated class cannot be
inherited from. Other than that, there are no restrictions that apply
to the decorated class.
To get the singleton instance, use the `instance` method. Trying
to use `__call__` will result in a `TypeError` being raised.
"""
def __init__(self, decorated):
self._decorated = decorated
def instance(self):
"""
Returns the singleton instance. Upon its first call, it creates a
new instance of the decorated class and calls its `__init__` method.
On all subsequent calls, the already created instance is returned.
"""
try:
return self._instance
except AttributeError:
self._instance = self._decorated()
return self._instance
def __call__(self):
raise TypeError('Singletons must be accessed through `instance()`.')
def __instancecheck__(self, inst):
return isinstance(inst, self._decorated)
class Singeltone(type):
instances = dict()
def __call__(cls, *args, **kwargs):
if cls.__name__ not in Singeltone.instances:
Singeltone.instances[cls.__name__] = type.__call__(cls, *args, **kwargs)
return Singeltone.instances[cls.__name__]
class Test(object):
__metaclass__ = Singeltone
inst0 = Test()
inst1 = Test()
print(id(inst1) == id(inst0))
好吧,我知道,单胞胎可能是好的,也可能是坏的。这是我的实现,我只是扩展了一个经典的方法,在里面引入一个缓存,并产生许多不同类型的实例,或者许多相同类型的实例,但具有不同的参数。
我称它为Singleton_group,因为它将相似的实例分组在一起,并防止创建具有相同参数的相同类的对象:
# Peppelinux's cached singleton
class Singleton_group(object):
__instances_args_dict = {}
def __new__(cls, *args, **kwargs):
if not cls.__instances_args_dict.get((cls.__name__, args, str(kwargs))):
cls.__instances_args_dict[(cls.__name__, args, str(kwargs))] = super(Singleton_group, cls).__new__(cls, *args, **kwargs)
return cls.__instances_args_dict.get((cls.__name__, args, str(kwargs)))
# It's a dummy real world use example:
class test(Singleton_group):
def __init__(self, salute):
self.salute = salute
a = test('bye')
b = test('hi')
c = test('bye')
d = test('hi')
e = test('goodbye')
f = test('goodbye')
id(a)
3070148780L
id(b)
3070148908L
id(c)
3070148780L
b == d
True
b._Singleton_group__instances_args_dict
{('test', ('bye',), '{}'): <__main__.test object at 0xb6fec0ac>,
('test', ('goodbye',), '{}'): <__main__.test object at 0xb6fec32c>,
('test', ('hi',), '{}'): <__main__.test object at 0xb6fec12c>}
每个对象都携带单例缓存…这可能是邪恶的,但对一些人来说很有用:)
正如公认的答案所说,最常用的方法是只使用一个模块。
考虑到这一点,下面是一个概念的证明:
def singleton(cls):
obj = cls()
# Always return the same object
cls.__new__ = staticmethod(lambda cls: obj)
# Disable __init__
try:
del cls.__init__
except AttributeError:
pass
return cls
有关__new__的更多详细信息,请参阅Python数据模型。
例子:
@singleton
class Duck(object):
pass
if Duck() is Duck():
print "It works!"
else:
print "It doesn't work!"
注:
为此,您必须使用new-style类(派生自object)。 单例在定义时初始化,而不是在第一次使用时初始化。 这只是一个简单的例子。我从未在产品代码中实际使用过它,也不打算这样做。
推荐文章
- 如何为python模块的argparse部分编写测试?
- 在python中是否有用于均方根误差(RMSE)的库函数?
- 如何从matplotlib (pyplot。Figure vs matplotlib。figure) (frameon=False matplotlib中有问题)
- django test app error -在创建测试数据库时出现错误:创建数据库的权限被拒绝
- 识别使用pip安装的python包的依赖关系
- 从字符串变量导入模块
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色