在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

如果您使用tf.train.MonitoredTrainingSession作为默认会话,则不需要添加额外的代码来执行保存/恢复操作。只需将检查点目录名称传递给MonitoredTrainingSession的构造函数,它将使用会话挂钩来处理这些。

其他回答

如果它是一个内部保存的模型,您只需为所有变量指定一个恢复器为

restorer = tf.train.Saver(tf.all_variables())

并使用它来恢复当前会话中的变量:

restorer.restore(self._sess, model_file)

对于外部模型,您需要指定从它的变量名到您的变量名的映射。您可以使用该命令查看模型变量名

python /path/to/tensorflow/tensorflow/python/tools/inspect_checkpoint.py --file_name=/path/to/pretrained_model/model.ckpt

inspect_checkpoint.py脚本可以在`。tensorflow源码的/tensorflow/python/tools文件夹。

为了指定映射,你可以使用我的Tensorflow-Worklab,它包含一组类和脚本来训练和再训练不同的模型。它包括一个再训练ResNet模型的例子,位于这里

你可以使用Tensorflow中的saver对象来保存你训练过的模型。该对象提供保存和恢复模型的方法。

在TensorFlow中保存一个训练好的模型:

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None,
                    meta_graph_suffix='meta', write_meta_graph=True,
                    write_state=True, strip_default_attrs=False,
                    save_debug_info=False)

在TensorFlow中恢复已保存的模型:

tf.train.Saver.restore(sess, save_path, latest_filename=None,
                       meta_graph_suffix='meta', clear_devices=False,
                       import_scope=None)

正如Yaroslav所说,您可以通过导入图、手动创建变量,然后使用Saver来从graph_def和检查点进行恢复。

我实现这个是为了我个人使用,所以我想在这里分享一下代码。

链接:https://gist.github.com/nikitakit/6ef3b72be67b86cb7868

(当然,这是一种hack,并且不能保证以这种方式保存的模型在TensorFlow的未来版本中仍然是可读的。)

使用tf.train.Saver保存模型。记住,如果想要减小模型大小,就需要指定var_list。val_list可以是:

特遣部队。trainable_variables或 tf.global_variables。

在大多数情况下,使用tf.train.Saver从磁盘保存和恢复是最好的选择:

... # build your model
saver = tf.train.Saver()

with tf.Session() as sess:
    ... # train the model
    saver.save(sess, "/tmp/my_great_model")

with tf.Session() as sess:
    saver.restore(sess, "/tmp/my_great_model")
    ... # use the model

您还可以保存/恢复图结构本身(详细信息请参阅MetaGraph文档)。默认情况下,保存程序将图形结构保存到.meta文件中。您可以调用import_meta_graph()来恢复它。它恢复图形结构并返回一个你可以用来恢复模型状态的保护程序:

saver = tf.train.import_meta_graph("/tmp/my_great_model.meta")

with tf.Session() as sess:
    saver.restore(sess, "/tmp/my_great_model")
    ... # use the model

然而,在某些情况下,您需要更快的方法。例如,如果您实现了早期停止,那么您希望在训练期间每次模型改进时都保存检查点(在验证集上测量),然后如果一段时间内没有进展,则希望回滚到最佳模型。如果每次模型改进时都将其保存到磁盘,则会极大地降低训练速度。诀窍是将变量状态保存到内存中,然后稍后恢复它们:

... # build your model

# get a handle on the graph nodes we need to save/restore the model
graph = tf.get_default_graph()
gvars = graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = [graph.get_operation_by_name(v.op.name + "/Assign") for v in gvars]
init_values = [assign_op.inputs[1] for assign_op in assign_ops]

with tf.Session() as sess:
    ... # train the model

    # when needed, save the model state to memory
    gvars_state = sess.run(gvars)

    # when needed, restore the model state
    feed_dict = {init_value: val
                 for init_value, val in zip(init_values, gvars_state)}
    sess.run(assign_ops, feed_dict=feed_dict)

A quick explanation: when you create a variable X, TensorFlow automatically creates an assignment operation X/Assign to set the variable's initial value. Instead of creating placeholders and extra assignment ops (which would just make the graph messy), we just use these existing assignment ops. The first input of each assignment op is a reference to the variable it is supposed to initialize, and the second input (assign_op.inputs[1]) is the initial value. So in order to set any value we want (instead of the initial value), we need to use a feed_dict and replace the initial value. Yes, TensorFlow lets you feed a value for any op, not just for placeholders, so this works fine.