在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
我在版本:
tensorflow (1.13.1)
tensorflow-gpu (1.13.1)
简单的方法是
拯救策略:
model.save("model.h5")
恢复:
model = tf.keras.models.load_model("model.h5")
其他回答
你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。
最简单的方法是使用keras api,在线保存模型和一行加载模型
from keras.models import load_model
my_model.save('my_model.h5') # creates a HDF5 file 'my_model.h5'
del my_model # deletes the existing model
my_model = load_model('my_model.h5') # returns a compiled model identical to the previous one
下面是一个使用Tensorflow 2.0 SavedModel格式(根据文档,这是推荐的格式)的简单MNIST数据集分类器的简单示例,使用Keras函数式API,没有太多的花哨操作:
# Imports
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Flatten
from tensorflow.keras.models import Model
import matplotlib.pyplot as plt
# Load data
mnist = tf.keras.datasets.mnist # 28 x 28
(x_train,y_train), (x_test, y_test) = mnist.load_data()
# Normalize pixels [0,255] -> [0,1]
x_train = tf.keras.utils.normalize(x_train,axis=1)
x_test = tf.keras.utils.normalize(x_test,axis=1)
# Create model
input = Input(shape=(28,28), dtype='float64', name='graph_input')
x = Flatten()(input)
x = Dense(128, activation='relu')(x)
x = Dense(128, activation='relu')(x)
output = Dense(10, activation='softmax', name='graph_output', dtype='float64')(x)
model = Model(inputs=input, outputs=output)
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Train
model.fit(x_train, y_train, epochs=3)
# Save model in SavedModel format (Tensorflow 2.0)
export_path = 'model'
tf.saved_model.save(model, export_path)
# ... possibly another python program
# Reload model
loaded_model = tf.keras.models.load_model(export_path)
# Get image sample for testing
index = 0
img = x_test[index] # I normalized the image on a previous step
# Predict using the signature definition (Tensorflow 2.0)
predict = loaded_model.signatures["serving_default"]
prediction = predict(tf.constant(img))
# Show results
print(np.argmax(prediction['graph_output'])) # prints the class number
plt.imshow(x_test[index], cmap=plt.cm.binary) # prints the image
serving_default是什么?
它是所选标记的签名定义的名称(在本例中,选择了默认的服务标记)。此外,本文还解释了如何使用saved_model_cli查找模型的标记和签名。
免责声明
这只是一个基本的例子,如果你只是想让它运行起来,但这绝不是一个完整的答案-也许我可以在未来更新它。我只是想给出一个在TF 2.0中使用SavedModel的简单示例,因为我在任何地方都没有见过这样简单的SavedModel。
@Tom的回答是一个SavedModel的例子,但它在Tensorflow 2.0上不起作用,因为不幸的是有一些突破性的变化。
@Vishnuvardhan Janapati的回答是TF 2.0,但它不适合SavedModel格式。
正如Yaroslav所说,您可以通过导入图、手动创建变量,然后使用Saver来从graph_def和检查点进行恢复。
我实现这个是为了我个人使用,所以我想在这里分享一下代码。
链接:https://gist.github.com/nikitakit/6ef3b72be67b86cb7868
(当然,这是一种hack,并且不能保证以这种方式保存的模型在TensorFlow的未来版本中仍然是可读的。)
无论你想把模型保存在哪里,
self.saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
...
self.saver.save(sess, filename)
确保你所有的任务。变量有名称,因为您可能希望稍后使用它们的名称来恢复它们。 在你想预测的地方,
saver = tf.train.import_meta_graph(filename)
name = 'name given when you saved the file'
with tf.Session() as sess:
saver.restore(sess, name)
print(sess.run('W1:0')) #example to retrieve by variable name
确保该保护程序在相应的会话中运行。 请记住,如果使用tf.train.latest_checkpoint('./'),那么将只使用最新的检查点。